СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФЕРРИТА БАРИЯ Российский патент 2015 года по МПК C01G49/00 C01F11/00 C25B1/18 H01F1/11 

Описание патента на изобретение RU2554200C2

Изобретение относится к технологии получения магнитотвердых материалов, которые могут быть использованы для производства магнитных порошков, постоянных магнитов, магнитопластов, магнитных жидкостей различного назначения, а также устройств магнитной записи высокой плотности.

Известен способ получения тонкодисперсного порошка гексаферрита общей формулой M(MeTi)xFe12-2xO19, где M-Ba или Sr, Me-Zn, Ni и (или) Co, x=0-2,0. Способ заключается в том, что соли металлов, входящих в состав феррита, в виде хлоридов или карбонатов измельчаются в шаровой мельнице, смешиваются с карбонатом натрия или калия, и полученная смесь подвергается термообработке при 700-1100°C. После охлаждения смесь, состоящая из феррита и хлорида щелочного металла, отмывается от последнего водой. Метод не обеспечивает воспроизводимость состава ферритовых порошков вследствие недостаточной однородности смесей веществ после механических операций измельчения и смешивания [EP 0072437 (B1) 1987-01-07].

Наиболее близким по технической сущности к заявляемому способу является способ получения порошка гексаферрита бария [Патент РФ 2026159, B22F 9/22, H01F 1/11, дата публ. 09.01.1995 г.], сущность которого заключается в том, что из растворов хлоридов ферритообразующих элементов, содержащихся в количествах, соответствующих стехиометрическому соотношению элементов в формуле феррита раствором Na2CO3, осаждаются гидроксиды карбонаты. Полное осаждение компонентов возможно только при pH 7,0-7,8. Барий осаждается в виде BaCO3 при pH 7.

Недостатком всех описанных способов является высокая сложность технологии, трудоемкость и длительность процессов.

Задачей настоящего изобретения является упрощение способа получения гексаферрита бария.

Поставленная задача решается следующим образом. Способ получения гексаферрита бария включает стадию получения суспензии гексаферрита, которую осуществляют электрохимическим методом путем растворения электродов из стали Ст3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе гидроксида бария при концентрации Ba(OH)2 - 7-10 мг/дм3 и хлорида натрия при концентрация NaCl - 3-5 мг/дм3 при напряжении 8-10 В, температуре 85-90°C и плотности тока 0,11 А/см2, осаждение полученной суспензии в нейтральной или слабощелочной среде, сушку.

Электрохимический метод отличается простотой, дешевизной аппаратурного оформления и возможностью управления интенсивностью процесса образования мелкодисперсного ферритового порошка путем изменения параметров электролиза (температура, концентрации NaCl, Ba(OH)2, напряжение).

Способ получения гексаферрита бария иллюстрируется следующим примером.

В емкость, содержащую раствор гидроксида бария (концентрация Ba(OH)2 - 7-10 мг/дм3) и хлорида натрия (концентрация NaCl - 3-5 мг/дм3), погружались электроды из Ст3, расстояние между которыми составляет 5-15 мм, температура раствора 85-90°C, подавалось напряжение 8-10 В, обеспечивающее плотность тока 0,11 А/см2. В результате электролиза в нейтральной или слабощелочной среде образуется осадок гексаферрита бария, который был идентифицирован рентгенографическим анализом и Мессбауэровской спектроскопией. Полученный гексаферрит бария обладает дисперсностью, легко стабилизируется и диспергируется. Свойства полученного порошка (ГФБ 1) приведены в таблице 1. Для сравнения в таблице приведены свойства гексаферрита бария, полученного химическим методом [Чернякова К.В. и др. Структура и магнитные свойства гексагонального феррита бария. / Вестник БГУ, сер. 2, 2008, №1, С. 9-13]. - ГФБ 2.

Таким образом, задача предлагаемого способа решена.

Главным упрощением технологии заявляемого способа получения гексаферрита бария является то, что гексаферрит бария получается одностадийно при температуре 85-90°C, в то время как при химическом осаждении процесс термообработки осажденного гексаферрита бария при температуре 1200°C является отдельной операцией и требует жаропрочной аппаратуры.

В предлагаемом способе соблюдение и изменение расстояния между электродами, регулировка напряжения, температуры, плотности тока не представляет технической сложности.

Похожие патенты RU2554200C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ГЕКСАФЕРИТА БАРИЯ 1991
  • Паньков Владимир Васильевич[By]
  • Фоменко Георгий Васильевич[By]
  • Алиновская Лина Александровна[By]
  • Ковалева Лариса Васильевна[By]
  • Богуш Анатолий Кандратьевич[By]
RU2026159C1
Способ получения замещенного марганцем гексаферрита бария 2023
  • Гафарова Ксения Петровна
  • Стариков Андрей Юрьевич
  • Шерстюк Дарья Петровна
  • Пунда Александр Юрьевич
RU2814967C1
КОМПОЗИЦИЯ ДЛЯ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ 2004
  • Грибанова Е.В.
  • Иванова В.И.
  • Лукьянова Н.А.
  • Луцев Л.В.
  • Николаев А.А.
  • Шуткевич В.В.
  • Яковлев С.В.
RU2247759C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ МАГНИТОТВЕРДЫХ ФЕРРИТОВ 2009
  • Лупанов Андрей Павлович
  • Котлярова Нина Борисовна
  • Степанчикова Ирина Германовна
  • Кузнецов Юрий Николаевич
RU2416490C2
Композиция для получения магнитотвердых ферритов и способ их получения 2019
  • Степанчиков Павел Михайлович
  • Нечистяк Наталья Валерьевна
RU2705155C1
Способ получения замещенного титаном гексаферрита бария 2021
  • Стариков Андрей Юрьевич
  • Павлова Ксения Петровна
  • Солизода Иброхими Ашурали
  • Шерстюк Дарья Петровна
RU2764763C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОЭРЦИТИВНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ГЕКСАФЕРРИТА СТРОНЦИЯ 2007
  • Казин Павел Евгеньевич
  • Зайцев Дмитрий Дмитриевич
  • Трусов Лев Артемович
RU2373593C2
Способ обработки пленочного магнитного материала гексаферрита бария 2022
  • Буташин Андрей Викторович
  • Муслимов Арсен Эмирбегович
  • Каневский Владимир Михайлович
  • Гаджиев Махач Хайрудинович
  • Тюфтяев Александр Семенович
RU2786771C1
СОСТАВ ДЛЯ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ СОСТАВА 2004
  • Грибанова Е.В.
  • Иванова В.И.
  • Лукьянова Н.А.
  • Луцев Л.В.
  • Николаев А.А.
  • Шуткевич В.В.
  • Яковлев С.В.
RU2247760C1
Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария 2015
  • Костишин Владимир Григорьевич
  • Андреев Валерий Георгиевич
  • Налогин Алексей Григорьевич
  • Читанов Денис Николаевич
  • Кудашов Алексей Анатольевич
  • Адамцов Артем Юрьевич
RU2615562C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФЕРРИТА БАРИЯ

Изобретение может быть использовано в производстве магнитных порошков, постоянных магнитов, магнитопластов, магнитных жидкостей, а также устройств магнитной записи высокой плотности. Способ получения гексаферрита бария включает получение суспензии гексаферрита бария, осаждение ее в нейтральной или слабощелочной среде, сушку. Суспензию гексаферрита бария получают электрохимическим методом путем растворения электродов из стали Ст3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе гидроксида бария и хлорида натрия. Процесс осуществляют при концентрации Ba(OH)2 7-10 мг/дм3, NaCl 3-5 мг/дм3, напряжении 8-10 B, температуре 85-90°C, плотности тока 0,11 А/см2. Изобретение позволяет упростить получение мелкодисперсного порошка гексаферрита бария. 1 табл., 1 пр.

Формула изобретения RU 2 554 200 C2

Способ получения гексаферрита бария, включающий процесс осаждения суспензии гексаферрита бария в нейтральной или слабощелочной среде, сушку образующейся суспензии, отличающийся тем, что процесс получения суспензии гексаферрита бария осуществляют электрохимическим методом путем растворения электродов из стали Ст3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе гидроксида бария (концентрация Ba(OH)2 - 7-10 мг/дм3) и хлорида натрия (концентрация NaCl - 3-5 мг/дм3) при напряжении 8-10 В, температуре 85-90°C и плотности тока 0,11 А/см2.

Документы, цитированные в отчете о поиске Патент 2015 года RU2554200C2

JP 2009208969 A, 17.09.2009;
Способ получения порошка феррита бария 1990
  • Распопов Юрий Григорьевич
  • Зиновик Михаил Аркадьевич
  • Краснобай Николай Григорьевич
  • Бердоносова Эликаида Анатольевна
  • Дементьев Владимир Григорьевич
  • Ланде Михаил Петрович
  • Коптев Иван Васильевич
SU1748952A1
Способ получения этилиденнорборнена 1970
  • Лившиц И.А.
  • Коробова Л.М.
  • Ковалева Г.В.
  • Марасанова Н.Н.
  • Брой-Каррэ Г.В.
  • Кисин К.В.
  • Курицын Ю.А.
  • Блатова А.Г.
SU360842A1
JP 2009035456 A, 19.02.2009;
ЧЕРНЯКОВА К.В
и др., Структура и магнитные свойства гексагонального феррита бария, Вестник БГУ, 2008, сер
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1

RU 2 554 200 C2

Авторы

Калаева Сахиба Зияддин Кзы

Макаров Владимир Михайлович

Яманина Нина Сергеевна

Шипилин Анатолий Михайлович

Шевелев Александр Витальевич

Шипилин Михаил Анатольевич

Даты

2015-06-27Публикация

2013-07-09Подача