Изобретение относится к области нанотехнологий, способам формирования наноструктур.
В настоящее время все большее внимание уделяется наноразмерным металлическим структурам, в частности, обладающим магнитными свойствами, и способам их получения.
Известен способ получения наночастиц сплава платиновых металлов с железом. Способ включает электрохимическое растворение сплава железо-платиновый металл при контролируемом значении анодного потенциала от +0,1 до +0,6 В с получением наночастиц размером 0,5-10 нм в виде нерастворенного осадка с содержанием железа до 40% от массы осадка.
Недостаток способа заключается в невозможности применения методики для получения наночастиц различного химического состава и малом интервале получаемых размеров частиц.
Наиболее близким к заявленному способу является патент 2429107 «Способ получения высокодисперсных порошков меди» автора Графутина В.И. Способ включает растворение материала анода из меди, погруженного в электролит, содержащий ионы меди, их восстановление с получением порошка меди. Восстановление ионов меди осуществляют в электролите электронами, поступающими с катода, при зажигании разряда между катодом и электролитом.
Однако предложенный способ не позволяет надежно контролировать получение частиц определенного состава и размера. На результат влияет материал электрода (высокая химическая чистота).
Одним из главных недостатков разработанных методов является широкое распределение получаемых наночастиц по размерам либо полное отсутствие структурированной матрицы формируемых элементов и невозможность получения частиц конкретного размера и формы. Поэтому основной задачей при разработке новых методик формирования наноразмерных материалов является получение частиц фиксированного размера и обеспечение возможности плавно изменять геометрические параметры образуемых структур. Кроме того, известные современные методы не являются универсальными с точки зрения материала получаемых частиц.
Для преодоления указанных недостатков предлагается данный способ.
Основной целью данного изобретения является: создание универсального способа получения наночастиц металла или полупроводника заданного размера.
Технический результат: способ позволяет получать частицы заданного размера от единиц нанометров до микрометров с допуском 10%.
Технический результат достигается восстановлением атомов металла или полупроводника искровым разрядом в тонком поверхностном слое солевого раствора, с использованием зарядного устройства, питающего конденсаторную батарею, подключенную к аноду, выполненному в виде кольца, и катоду, размещенному в середине упомянутого кольца без погружения в электролит, за счет вариации таких параметров системы, как емкость конденсаторной батареи и концентрация солевого раствора электролита.
Описание изобретения
Способ получения наноразмерных частиц, включающий электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера. Электроплазменную обработку поверхности электролита проводят с использованием зарядного устройства с напряжением до 30 кВ, питающего конденсаторную батарею с емкостью (1,02…75)·10-10 Ф, анода, выполненного в виде кольца и размещенного с зазором 2-4 мм над поверхностью электролита. Катод размещается в середине упомянутого кольца без погружения в электролит. Устанавливаемый воздушный зазор между анодом и электролитом 2…4 мм должен гарантировать его электрический пробой (фиг. 1), который в условиях данной системы происходит с постоянной частотой, зависящей от прикладываемого потенциала и емкости конденсаторной батареи.
Предлагаемый вариант расположения электродов (фиг. 1), во-первых, позволяет варьировать контактную площадь плазмы искрового разряда с поверхностью электролита, изменяя расстояние между электродами, во-вторых, позволяет применять электроды из любого проводящего материала и, в-третьих, исключает непосредственный контакт электрода с электролитом. Использование кольцеобразного электрода обеспечивает веерное перемещение искрового разряда по поверхности электролита.
При протекании искрового разряда по поверхности электролита между электродами происходит восстановление индуцированных ионов нейтрального состояния атомов и агломерация их в наноразмерные частицы металлов или полупроводников, затем следует перезарядка конденсаторной батареи и повторение цикла разрядов.
При содержании в водном растворе сульфида меди 31.96·10-3 вес. % - 0.5 г/л получены частицы со средним размером ~42 нм, а при увеличении концентрации до 14.66% - 250 г/л их величина составила ~820 нм, размеры сформированных объектов определялись лазерным анализатором Microtrac S3500. Пример получаемого распределения частиц после пятиминутного воздействия плазмы искрового разряда с Uc=7…9 кВ на раствор CuSO4 с концентрацией пятиводной соли 1 г/л представлен на фиг. 2. Интервал, в котором изменение концентрации влечет за собой изменение размера частиц, оказывается достаточно узким 0.5…5 г/л (фиг. 3), причем с превышением концентрации в 5 г/л средний размер формируемых частиц выходит на постоянную величину 820 нм. Таким образом, достигается стабильное состояние формирующейся частицы и дальнейшее увеличение концентрации способствует наработке большего количества формирующихся частиц.
Частицы имеют пластинчатую форму, определяемую диффузионным сбором атомов из очень тонкого поверхностного слоя, что подтверждается результатами атомно-силовой микроскопии. Концентрация ионов металла или полупроводника в поверхностном слое электролита позволяет контролировать количество восстановленных атомов в активной области при равных протекающих разрядных токах и влияет на размер и характер распределения частиц.
Вторым фактором, позволяющим контролировать размер формируемых частиц, является емкость конденсаторной батареи, которая определяет заряд, проходящий по поверхности электролита, и, соответственно, количество восстановленных ионов металла или полупроводника. Результат анализа растворов после электроплазменной обработки с емкостями в интервале от 102 пФ до 4 мкФ представленный на фиг. 4 подтверждает рост размера формируемых частиц от разрядной емкости конденсаторной батареи, здесь размер указан по среднему значению гистограммы распределения частиц.
После завершения электроплазменной обработки и окончательного формирования итоговой частицы при отсутствии в растворе стабилизирующих поверхностно-активных веществ происходит дальнейшая агломерация сформированных частиц в более крупные фрагменты.
Предложенным способом, подбирая емкость конденсаторной батареи и концентрацию солевого раствора электролита, можно получить частицы заданного размера, а использование различных солевых растворов электролитов позволяет получать металлические или полупроводниковые частицы требуемого химического состава. Таким образом, достигается указанный технический результат получения частиц заданного размера от единиц нанометров до микрометров с допуском 10%.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения наноструктурного материала оксида олова на углеродном носителе | 2017 |
|
RU2656914C1 |
Способ получения наноразмерных металлических частиц | 2022 |
|
RU2816468C1 |
Способ получения бинарных металлических частиц электрохимическим методом | 2021 |
|
RU2778543C1 |
ДОБАВКА ДЛЯ ЛИТИЙ-ИОННЫХ ПЕРЕЗАРЯЖАЕМЫХ БАТАРЕЙ | 2011 |
|
RU2533650C2 |
Способ плазмоэлектрохимической переработки графита из использованных литий-ионных аккумуляторов | 2023 |
|
RU2825576C1 |
ЭЛЕКТРОД-ЭЛЕКТРОЛИТНАЯ ПАРА НА ОСНОВЕ ДВУОКИСИ ЦЕРИЯ (ВАРИАНТЫ), СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) И ОРГАНОГЕЛЬ | 2003 |
|
RU2236722C1 |
Способ получения наноструктурного оксида кобальта на углеродном носителе | 2019 |
|
RU2723558C1 |
ЭЛЕКТРОД-ЭЛЕКТРОЛИТНАЯ ПАРА НА ОСНОВЕ ДВУОКИСИ ЦИРКОНИЯ (ВАРИАНТЫ), СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) И ОРГАНОГЕЛЬ | 2003 |
|
RU2236068C1 |
СПОСОБ НАНЕСЕНИЯ ЦИНКОВЫХ ПОКРЫТИЙ | 2009 |
|
RU2389828C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СТРУКТУРИРОВАННЫХ ЧАСТИЦ, СОСТОЯЩИХ ИЗ КРЕМНИЯ ИЛИ МАТЕРИАЛА НА ОСНОВЕ КРЕМНИЯ, И ИХ ПРИМЕНЕНИЕ В ПЕРЕЗАРЯЖАЕМЫХ ЛИТИЕВЫХ БАТАРЕЯХ | 2008 |
|
RU2451368C2 |
Изобретение относится к порошковой металлургии. Способ получения наноразмерных частиц включает электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера. Электроплазменную обработку поверхности электролита проводят с использованием зарядного устройства с напряжением до 30 кВ, питающего конденсаторную батарею с емкостью (1,02…75)·10-10 Ф, анода, выполненного в виде кольца и размещенного с зазором 2-4 мм над поверхностью электролита, и катода, размещенного в середине упомянутого кольца без погружения в электролит. Обработку ведут с обеспечением веерного перемещения искрового разряда по поверхности электролита, восстановлением индуцированных ионов до нейтрального состояния атомов и агломерацией их в наноразмерные частицы металлов или полупроводников, изменение размера которых задают изменением параметров емкости конденсаторной батареи и концентрации солевого раствора электролита. Обеспечивается получение наночастиц металла с допуском 10%. 4 ил.
Способ получения наноразмерных частиц, включающий электроплазменную обработку поверхности электролита в виде солевого раствора, содержащего индуцированные ионы металлов или полупроводников с формированием из них частиц заданного размера, отличающийся тем, что электроплазменную обработку поверхности электролита проводят с использованием зарядного устройства с напряжением до 30 кВ, питающего конденсаторную батарею с емкостью (1,02…75)·10-10 Ф, анода, выполненного в виде кольца и размещенного с зазором 2-4 мм над поверхностью электролита, и катода, размещенного в середине упомянутого кольца без погружения в электролит, причем обработку ведут с обеспечением веерного перемещения искрового разряда по поверхности электролита и восстановлением индуцированных ионов до нейтрального состояния атомов с агломерацией их в наноразмерные частицы металлов или полупроводников, изменение размера которых задают изменением параметров емкости конденсаторной батареи и концентрации солевого раствора электролита.
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ ПОРОШКОВ МЕДИ | 2009 |
|
RU2429107C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ | 2012 |
|
RU2496920C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ МЕТАЛЛОВ В ЖИДКОЙ ФАЗЕ | 2008 |
|
RU2364470C1 |
ВЫКЛЮЧАТЕЛЬ ЭЛЕКТРООБОРУДОВАНИЯ ТРАНСПОРТНОГО СРЕДСТВА | 1994 |
|
RU2112670C1 |
US 20060042414 A1, 02.03.2006 | |||
ЭЛЕКТРОЛИЗЕР ДЛЯ ВЫДЕЛЕНИЯ ГАЛЛИЯ ИЗ РАСТВОРОВ | 2007 |
|
RU2346085C2 |
Авторы
Даты
2015-08-10—Публикация
2013-12-03—Подача