СПОСОБ ПОЛУЧЕНИЯ БИС(2-ГИДРОКСИФЕНИЛ)ОВОГО ЭФИРА ОЛИГОЭТИЛЕНГЛИКОЛЯ В ВИДЕ МОНОГИДРАТА Российский патент 2015 года по МПК C07C43/23 C07C41/01 

Описание патента на изобретение RU2564257C1

Изобретение относится к способу получения бис(2-гидрокси-фенил)ового эфира олигоэтиленгликоля формулы 3, промежуточного продукта для синтеза симметричного и несимметричного дибензо-краун-эфиров. Последние находят применение в качестве селективного экстрагента различных катионов металлов, в том числе радиоактивных [Успехи химии, 2000, т.69, №9, с. 769-782].

Описан метод получения соединения формулы 3b,с в две стадии - на первой стадии из монобензилового эфира пирокатехина и дитозилзамещенного олигоэтиленгликоля синтезируют монобензиловый эфир соединения 3b,с, который на второй стадии восстанавливают водородом на Pd-C до соединения 3b,с. Выход составляет 73-74% [J. Chem. Soc. Perkin Trans. II, 1985, р. 607-624]. Недостатком данного способа является сложное аппаратурное оформление процесса.

Описан способ получения соединения формулы 3а-с по реакции Вильямсона [патент РФ №1047917] в одну стадию - взаимодействием эквимолярных количеств пирокатехина 1 и хлорпроизводного олигоэтиленгликоля 2а-с в воде в присутствии щелочи при температуре 95-103°С. Для предотвращения образования побочных продуктов процесс ведут в токе инертного газа. По окончании реакции (продолжительность реакции не указана) целевой продукт очищают хроматографически на оксиде алюминия, а затем перегоняют в вакууме (выход соединений формулы 3а-с не указан). Недостатками данного способа являются сложное аппаратурное оформление процесса и двухстадийная очистка целевых продуктов.

Известен метод синтеза соединения 3а нагреванием пирокатехина 1 и 1,5-дихлор-3-оксапентана (β,β′-дихлорэтилового эфира) 2а в смеси абсолютных метанола и бутанола в присутствии метилата натрия в токе инертного газа с выходом 34% в виде кристаллогидрата [ЖОрХ, 1978, т.14, вып.10, с. 2228]. В патенте РФ №2479567 взаимодействие пирокатехина 1 и 1,5-дихлор-3-оксапентана 2а осуществляют в этаноле при кипении в присутствии воды, с использованием в качестве основания гидроксида натрия, а в качестве катализатора Ν,Ν,Ν-триэтилбензиламмоний хлорид. Время реакции 24 часа. Соединение 3а выделяют экстрагированием технического продукта гексаном. Выход целевого соединения 3а составляет 51%. Недостатками данных способов являются необходимость использования инертного газа, значительная длительность процесса, сложность выделения, и низкий выход целевого продукта 3а.

В патенте РФ №2483055, который выбран в качестве прототипа, описан способ получения 1,5-бис(2-гидроксифенокси)-3-оксапентана 3а взаимодействием пирокатехина 1 с 1,5-дихлор-3-оксапентаном 2а в токе инертного газа в среде глицерина и в присутствии карбоната калия при 145-150°С. Предварительно пирокатехин при интенсивном перемешивании обрабатывают карбонатом натрия в среде глицерина в токе инертного газа при температуре 60-80°С для получения мононатриевой соли пирокатехина (время образования соли не указано). Затем температуру реакции повышают до 145-150°С и в течение 2 часов прибавляют 1,5-дихлор-3-оксапентан 2а. Технический продукт высаживают водой, очищают путем его превращения в калиевую соль (обработка спиртового раствора 3а водным раствором КОН) с последующей ее нейтрализацией (обработка раствором НСl). Выход продукта 3а в виде моногидрата составляет 82.5%. К основным недостаткам этого метода следует отнести необходимость использования инертного газа, сложную очистку целевого продукта, а также использование гигроскопичного глицерина как органического растворителя. Кроме того, нагревание реакционной массы до 145-150°С может способствовать увеличению количества побочных продуктов.

С целью создания способа получения, который сочетал бы экологическую безопасность и возможность его промышленного использования, предлагается новый способ получения соединений 3а-с, отличающийся использованием гетерогенного катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного.

Новый способ получения бис(2-гидрокси-фенил)овых эфиров олигоэтиленгликолей 3а-с осуществляют путем взаимодействия пирокатехина 1 с дихлорзамещенным олигоэтиленгликолем 2а-с в присутствии щелочного агента и катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного, в среде ДМФА при одновременном добавлении хлорекса при температуре 70°С, дальнейшего нагревания реакционной массы в течение 4-6 часов при 100-105°С с последующим подкислением реакционной массы до рН 3 и высаживанием готового продукта 3а-с водой. Выходы продуктов 3а-с составляют 46.4-85.0%.

Предлагаемый способ отличается от способа-прототипа использованием гетерогенного катализатора - оксида металла или элемента, что значительно повышает хемоселективность процесса.

В работе [Изв. АН Сер. Хим., 2010, №11, с. 2068-2071] показано, что использование наноразмерных оксидов металлов значительно повышает хемоселективность реакции Вильямсона с участием ароматических альдегидов или кетонов и хлорпроизводного олигоэтиленгликоля 2а-с. Это происходит за счет особых свойств нанооксидов - развитой поверхности и наличия активных центров различной природы. Сорбция реагентов способствует их активации и прохождению реакции в нужном направлении, а также ингибированию побочных процессов [Кинетика и катализ, 2010, №4, с. 590-596]. Использование этого явления в заявляемом изобретении позволяет достичь технического результата, заключающегося в увеличении хемоселективности реакции, что выражается в увеличении выхода целевого соединения, а также значительном упрощении аппаратурного оформления процесса.

В предлагаемом способе исходный пирокатехин, так же как и в прототипе, берется в избытке 6-10%, реакция ведется в присутствии гидроксида натрия (щелочного агента), а дихлорзамещенный олигоэтиленгликоль 2а-с вводится в один прием. Основными отличиями от прототипа являются использование в качестве растворителя ДМФА и гетерогенного катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного, что позволяет смягчить условия реакции - снизить температуру реакции, отказаться от использования инертного газа, а также упростить выделение и очистку целевого продукта. Реакционную массу разбавляют водой, подкисляют до рН 3, готовый продукт 3а-с отфильтровывают, промывают водой и сушат. Получают чистое соединение 3а-с в виде моногидрата с выходом 46.4-85% (2а - 85%, 2b - 62%, 2с - 46.4%). Содержание основного вещества в соединении 3а-с составляет более 99% по данным газожидкостной хроматографии. Физико-химические свойства соединения 3а-с соответствуют литературным данным. Изобретение иллюстрируется следующими примерами.

Пример 1. В реактор загружают 150 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина и 8.8 г (2.20 моль) гидроксида натрия и 4.07 г (0.5 ммоль) наноразмерного ZnO, реакционную массу перемешивают при температуре 60-70°С до образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 14.30 г (1.0 ммоль) 1,5-дихлор-3-оксапентана (β,β′-дихлорэтилового эфира) 2а, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 26.21 г чистого 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата 3а с выходом 85.0%, считая на 1,5-дихлор-3-оксапентан 2а.

Пример 2. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина и 8.8 г (2.20 моль) гидроксида натрия и 2.02 г (0.5 ммоль) наноразмерного MgO, реакционную массу перемешивают при температуре 60-70°С до образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 14.30 г (1.0 ммоль) 1,5-дихлор-3-оксапентана 2а, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 26.21 г чистого 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата 3а с выходом 85.0%, считая на 1,5-дихлор-3-оксапентан 2а.

Пример 3. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина и 8.8 г (2.20 моль) гидроксида натрия и 1.40 г (0.5 ммоль) наноразмерного SiO2, реакционную массу перемешивают при температуре 60-70°С до образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 14.30 г (1.0 ммоль) 1,5-дихлор-3-оксапентана 2а, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 26.21 г чистого 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата 3а с выходом 84.8%, считая на 1,5-дихлор-3-оксапентан 2а.

Пример 4. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2.20 моль) гидроксида натрия и 5.10 г (0.5 ммоль) наноразмерного Al2O3, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 18.70 г (1.0 ммоль) 1,8-дихлор-3,6-диоксаоктана 2b, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 21.84 г чистого 1,8-бис(2-гидроксифенокси)-3,6-диоксаоктана моногидрата 3b с выходом 62.0%, считая на 1,8-дихлор-3,6-диоксаоктан 2b.

Пример 5. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2.20 моль) гидроксида натрия и 7.77 г (0.5 ммоль) наноразмерного ВаО, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 18.70 г (1.0 ммоль) 1,8-дихлор-3,6-диоксаоктана 2b, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 21.84 г чистого 1,8-бис(2-гидроксифенокси)-3,6-диоксаоктана моногидрата 3b с выходом 62.0%, считая на 1,8-дихлор-3,6-диоксаоктан 2b.

Пример 6. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2,20 моль) гидроксида натрия и 2.39 г (0.5 ммоль) ТiO2, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 23.10 г (1.0 ммоль) 1,11-дихлор-3,6,9-триоксаундекана 2с, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 15.85 г чистого 1,11-бис(2-гидроксифенокси)-3,6,9-триоксаундекана моногидрата 3с с выходом 46.0%, считая на 1,11-дихлор-3,6,9-триоксаундекан 2с.

Пример 7. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2,20 моль) гидроксида натрия и 3.98 г (0.5 ммоль) наноразмерного СuО, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 23.10 г (1.0 ммоль) 1,11-дихлор-3,6,9-триоксаундекана 2с, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 15.85 г чистого 1,11-бис(2-гидроксифенокси)-3,6,9-триоксаундекана моногидрата 3с с выходом 46.4%, считая на 1,11-дихлор-3,6,9-триоксаундекан 2с.

Похожие патенты RU2564257C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СИММЕТРИЧНОГО И НЕСИММЕТРИЧНОГО ДИБЕНЗО-КРАУН-ЭФИРОВ 2014
  • Федорова Ольга Васильевна
  • Овчинникова Ирина Георгиевна
  • Русинов Геннадий Леонидович
  • Чарушин Валерий Николаевич
RU2564258C1
СПОСОБ ПОЛУЧЕНИЯ 1,5-БИС(2-ГИДРОКСИФЕНОКСИ)-3-ОКСАПЕНТАНА МОНОГИДРАТА 2012
  • Глушко Валентина Николаевна
  • Цирульникова Нина Владимировна
  • Санду Роман Александрович
  • Блохина Лидия Иосифовна
  • Фетисова Татьяна Сергеевна
  • Немерюк Алексей Михайлович
RU2483055C1
ЗАМЕЩЕННЫЕ ДИ(ФОРМИЛАРИЛ)ПОЛИЭФИРЫ, ИЛИ ИХ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ, ИЛИ ИХ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫЕ АДДИТИВНЫЕ СОЛИ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ 1998
  • Чупахин О.Н.
  • Федорова О.В.
  • Русинов Г.Л.
  • Мордовской Г.Г.
  • Хоменко А.Г.
  • Голышевская В.И.
  • Зуева М.Н.
  • Овчинникова И.Г.
RU2137750C1
@ , @ -Ди/карбамоиламинокси/олигооксаалканы в качестве промежуточных продуктов для получения диалкоксимочевин 1990
  • Штамбург Василий Георгиевич
  • Рудченко Владимир Федорович
  • Плешкова Александра Петровна
  • Дмитренко Александр Алексеевич
  • Скобелев Олег Леонидович
SU1836337A3
СПОСОБ ПОЛУЧЕНИЯ ТРИАЛКИЛОРТОФОРМИАТОВ 1993
  • Штамбург Василий Георгиевич[Ua]
  • Дмитренко Александр Алексеевич[Ua]
  • Жуховицкий Вадим Борисович[Ua]
  • Скобелев Олег Леонидович[Ua]
RU2072978C1
СПОСОБ ПОЛУЧЕНИЯ 1,5-БИС(2-ГИДРОКСИФЕНОКСИ)-3-ОКСАПЕНТАНА МОНОГИДРАТА 2001
  • Полосин В.М.
  • Ершова Т.Н.
RU2203882C1
1,12-Диаза-2,5,8,11,15-пентаоксациклогептадекан и способ его получения 1990
  • Штамбург Василий Георгиевич
  • Скобелев Олег Леонидович
  • Плешкова Александра Петровна
  • Костяновский Рэмир Григорьевич
  • Дмитренко Александр Алексеевич
  • Селезнев Юрий Станиславович
SU1726475A1
СПОСОБ ПОЛУЧЕНИЯ 3,3'-(3,6-ДИОКСАОКТАН-1,8-ДИИЛ)БИС-1,5,3-ДИТИАЗЕПИНАНА И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ СРЕДСТВА С ФУНГИЦИДНОЙ АКТИВНОСТЬЮ 2013
  • Джемилев Усеин Меметович
  • Ибрагимов Асхат Габдрахманович
  • Зайнуллин Радик Анварович
  • Галимзянова Наиля Фауатовна
  • Рахимова Елена Борисовна
  • Исмагилов Ринат Арфикович
RU2547267C2
СПОСОБ ПОЛУЧЕНИЯ 3, 3'-[ОКСА(ТИА)АЛКАН-альфа, омега-ДИИЛ]-БИC-1, 5, 3-ДИТИАЗЕПИНАНОВ 2012
  • Джемилев Усеин Меметович
  • Ибрагимов Асхат Габдрахманович
  • Рахимова Елена Борисовна
  • Ефремова Екатерина Александровна
RU2518482C2
α-БРОМ-ω-ГАЛОГЕНПЕРФТОРПОЛИЭФИРЫ В КАЧЕСТВЕ ОСНОВЫ ГАЗОТРАНСПОРТНЫХ КОМПОЗИЦИЙ МЕДИКО-БИОЛОГИЧЕСКОГО НАЗНАЧЕНИЯ 2019
  • Маевский Евгений Ильич
  • Игумнов Сергей Михайлович
  • Стерлин Сергей Рафаилович
  • Тютюнов Андрей Александрович
RU2707081C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ БИС(2-ГИДРОКСИФЕНИЛ)ОВОГО ЭФИРА ОЛИГОЭТИЛЕНГЛИКОЛЯ В ВИДЕ МОНОГИДРАТА

Изобретение относится к способу получения бис(2-гидрокси-фенил)ового эфира олигоэтиленгликоля в виде моногидрата - промежуточного продукта для синтеза симметричного и несимметричного дибензо-краун-эфиров, которые используют в качестве селективного экстрагента катионов различных металлов, в том числе радиоактивных, а также в различных областях химии, техники, биологии и медицины. Способ заключается во взаимодействии избытка пирокатехина с дихлорзамещенным олигоэтиленгликолем в присутствии щелочного агента в среде органического растворителя при нагревании. При этом в качестве щелочного агента используют гидроксид натрия, в качестве органического растворителя - ДМФА, а процесс ведут при температуре 100-105°С в присутствии катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного. Предлагаемый способ позволяет получить целевые продукты с высоким выходом при значительном упрощении аппаратурного оформления процесса. 7 пр.

Формула изобретения RU 2 564 257 C1

Способ получения бис(2-гидроксифенил)ового эфира олигоэтиленгликоля в виде моногидрата взаимодействием избытка пирокатехина с дихлорзамещенным олигоэтиленгликолем в присутствии щелочного агента в среде органического растворителя при нагревании, отличающийся тем, что в качестве щелочного агента используют гидроксид натрия, в качестве органического растворителя - ДМФА, а процесс ведут при температуре 100-105°С в присутствии катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564257C1

СПОСОБ ПОЛУЧЕНИЯ 1,5-БИС(2-ГИДРОКСИФЕНОКСИ)-3-ОКСАПЕНТАНА МОНОГИДРАТА 2012
  • Глушко Валентина Николаевна
  • Цирульникова Нина Владимировна
  • Санду Роман Александрович
  • Блохина Лидия Иосифовна
  • Фетисова Татьяна Сергеевна
  • Немерюк Алексей Михайлович
RU2483055C1
СПОСОБ ПОЛУЧЕНИЯ БИС[β-(2-ОКСИФЕНОКСИЭТИЛ)]ОКСИДА 2011
  • Нельга Игорь Аликович
  • Алтухова Ольга Сергеевна
RU2479567C2
С.А.Котляр и др.: "Улучшенный способ получения некоторых дибензокраун-эфиров"
Журнал общей химии, 1998, том 68, вып.7, 1189-1192
JP 08301865A, 19.11.1996

RU 2 564 257 C1

Авторы

Овчинникова Ирина Георгиевна

Федорова Ольга Васильевна

Русинов Геннадий Леонидович

Чарушин Валерий Николаевич

Даты

2015-09-27Публикация

2014-09-22Подача