СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ АМИНОКИСЛОТ В АЛЬГИНАТЕ НАТРИЯ Российский патент 2015 года по МПК A61K31/195 A61K47/36 A61K9/50 A61J3/07 B01J13/02 

Описание патента на изобретение RU2565408C1

Изобретение относится к области нанотехнологий и может быть использовано в фармакологии, фармацевтике, медицине.

Из уровня техники известны различные способы получения микрокапсул.

Например, в патенте РФ №2173140 (МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001) предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе только с полимерами синтетического происхождения.

В патенте РФ №2359662 (МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009) предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в патенте РФ №2134967 (МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999). Способ заключается в том, что в воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в - этаноле, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - устранение недостатка прототипа, т.е. создание способа получения микрокапсул водорастворимых аминокислот в альгинате натрия, который также является водорастворимым.

Технический результат - получение капсул с супрамолекулярными свойствами в водорастворимой оболочке.

Дополнительный технический результат - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул за счет увеличения выхода по массе.

Решение технической задачи достигается способом получения микрокапсул аминокислот с оболочкой из альгината натрия методом осаждения нерастворителем с применением этанола в качестве осадителя микрокапсул из альгината натрия без специального оборудования.

Аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле, в присутствии ПАВ при перемешивании 1000 об/сек, затем приливают этанол и воду, полученную суспензию отфильтровывают и сушат при комнатной температуре.

В качестве ПАВ предпочтительно использование препарата E472c, являющегося сложным эфиром глицерина с одной - двумя молекулами пищевых жирных кислот и одной - двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием. E472c не обладает токсическим действием и не вызывает раздражения слизистых оболочек. Как эфир моно- и диглицеридов лимонной и жирных кислот относится к стабилизирующим веществам, применяемым для сохранения и улучшения вязкости и консистенции пищевых продуктов.

Отличительной особенностью предлагаемого способа является получение микрокапсул методом осаждения нерастворителем с использованием этанола в качестве осадителя, а также использование альгината натрия в качестве оболочки микрокапсул.

Изобретение характеризуется следующими изображениями:

На фиг. 1 Конфокальное изображение фрактальной композиции из раствора микрокапсул L-аргинина в оболочке альгината натрия, соотношение оболочка:ядро 3:1, в концентрации 0,25%: а) увеличение в 505 раз, б) увеличение в 930 раз, в) увеличение в 2830 раз.

На фиг. 2 Конфокальное изображение фрактальной композиции из раствора микрокапсул L-аргинина в оболочке альгината натрия, соотношение оболочка:ядро 3:1, в концентрации 0,125%: а) увеличение в 930 раз, б) увеличение в 2830 раз.

На фиг. 3 Конфокальное изображение фрактальной композиции из раствора микрокапсул L-аргинина в оболочке альгината натрия, соотношение оболочка:ядро 1:5, в концентрации 0,125% увеличение в 2830 раз.

На фиг. 4 Конфокальное изображение фрактальной композиции из раствора микрокапсул норвалина в оболочке альгината натрия, соотношение оболочка:ядро 3:1, в концентрации 0,5% увеличение в 2830 раз.

На фиг. 5 Конфокальное изображение фрактальной композиции из раствора микрокапсул норвалина в оболочке альгината натрия, соотношение оболочка:ядро 3:1, в концентрации 0,125%: а) увеличение в 930 раз, б) увеличение в 2830 раз.

На фиг. 6 Конфокальное изображение фрактальной композиции из раствора микрокапсул норвалина в оболочке альгината натрия, соотношение оболочка:ядро 1:5, в концентрации 0,125%: а) увеличение в 930 раз, б) увеличение в 2830 раз.

Использование предлагаемого способа не ограничено аминокислотами, в приведенных ниже примерах.

ПРИМЕР 1. Получение микрокапсул L-аргинина в альгинате натрия с соотношением оболочка:ядро 1:5.

5 г L-аргинина растворяют в 10 мл диметилсульфоксида и диспергируют полученную смесь в суспензию альгината натрия в бутаноле, содержащего 1 г указанного полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 5 мл этанола и 1 мл воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка микрокапсул. Выход составил 100%.

ПРИМЕР 2. Получение микрокапсул L-аргинина в альгинате натрия соотношение оболочка: ядро 3:1

1 г L-аргинина растворяют в 5 мл диметилсульфоксида и диспергируют полученную смесь в суспензию альгината натрия в бутаноле, содержащего 3 г указанного полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 3 мл этанола и 1 мл воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка микрокапсул. Выход составил 100%.

ПРИМЕР 3. Получение микрокапсул норвалина в альгинате натрия, соотношение оболочка: ядро 1:5.

5 г норвалина растворяют в 10 мл диметилсульфоксида и диспергируют полученную смесь в суспензию альгината натрия в бутаноле, содержащий 1 г указанного полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 5 мл этанола и 1 мл воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка микрокапсул. Выход составил 100%.

ПРИМЕР 4. Получение микрокапсул норвалина в альгинате натрия соотношение оболочка: ядро 3:1

1 г L-аргинина растворяют в 5 мл диметилсульфоксида и диспергируют полученную смесь в суспензию альгината натрия в бутаноле, содержащего 3 г указанного полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 3 мл этанола и 1 мл воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка микрокапсул. Выход составил 100%.

ПРИМЕР 5. Исследование самоорганизации микрокапсул из растворов

Из порошка микрокапсул, полученных по примерам 1-4, были приготовлены водные растворы концентрациями 1%, 0,5%, 0,25%, 0,125% и т.д. путем разбавления раствора в два раза. Капля каждого из приготовленных растворов помещалась на предметное стекло до полного высушивания и по высушенной поверхности проводилась конфокальная сканирующая микроскопия. Представленные на фигурах 1-6 структуры являются упорядоченными, значит, они обладают самоорганизацией. Следовательно, микрокапсулы в альгинате натрия L-аргинина и норвалина обладают супрамолекулярными свойствами.

Таким образом, по предложенному способу получены микрокапсулы L-аргинина и норвалина с высоким выходом без специального оборудования в течение 10 мин. Образование микрокапсул происходит спонтанно за счет нековалентных взаимодействий и это говорит о том, что для них характерна самосборка.

Похожие патенты RU2565408C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ АМИНОКИСЛОТ В КСАНТАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Покровский Михаил Владимирович
  • Богачев Илья Александрович
  • Якушев Владимир Иванович
  • Гудырев Олег Сергеевич
  • Ремизов Павел Павлович
  • Соболев Михаил Сергеевич
RU2558859C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ АМИНОКИСЛОТ В КОНЖАКОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Покровский Михаил Владимирович
  • Богачев Илья Александрович
  • Якушев Владимир Иванович
  • Гудырев Олег Сергеевич
  • Ремизов Павел Павлович
  • Соболев Михаил Сергеевич
RU2558856C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛОЗАРТАНА КАЛИЯ В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Покровский Михаил Владимирович
  • Богачев Илья Александрович
  • Якушев Владимир Иванович
  • Гудырев Олег Сергеевич
  • Ремизов Павел Павлович
  • Соболев Михаил Сергеевич
RU2558855C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ АРОМАТИЗАТОРОВ "ВИШНЯ" И "ТОМАТ", ОБЛАДАЮЩИХ СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ 2013
  • Кролевец Александр Александрович
RU2557939C2
СПОСОБ ИНКАПСУЛЯЦИИ ФЕРРОЦЕНА 2013
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2545828C2
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ РЕЗВЕРАТРОЛА В КСАНТАНОВОЙ КАМЕДИ, ОБЛАДАЮЩИХ СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ 2014
  • Кролевец Александр Александрович
  • Покровский Михаил Владимирович
  • Богачев Илья Александрович
  • Якушев Владимир Иванович
  • Гудырев Олег Сергеевич
  • Файтельсон Александр Владимирович
  • Ремизов Павел Павлович
  • Соболев Михаил Сергеевич
RU2557942C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СЕЛ-ПЛЕКСА, ОБЛАДАЮЩИХ СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ 2014
  • Кролевец Александр Александрович
  • Сеин Олег Борисович
  • Богачев Илья Александрович
RU2556118C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ АРОМАТИЗАТОРА "ЗЕЛЕНОЕ ЯБЛОКО" 2013
  • Кролевец Александр Александрович
RU2541814C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АСПИРИНА В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Покровский Михаил Владимирович
  • Богачев Илья Александрович
  • Покровская Татьяна Григорьевна
  • Гудырев Олег Сергеевич
  • Кочкаров Владимир Исхакиевич
  • Корокин Михаил Викторович
RU2565396C1
СПОСОБ БИОИНКАПСУЛЯЦИИ БЕТАИНА, ОБЛАДАЮЩЕГО СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ 2013
  • Кролевец Александр Александрович
  • Дубцова Галина Николаевна
  • Тырсин Юрий Александрович
  • Дедова Ирина Александровна
  • Воронцова Марина Леонидовна
RU2547559C2

Иллюстрации к изобретению RU 2 565 408 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ АМИНОКИСЛОТ В АЛЬГИНАТЕ НАТРИЯ

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата E472c при перемешивании 1000 об/сек. Затем приливают этанол и воду, полученную суспензию отфильтровывают и сушат при комнатной температуре. Процесс осуществляют в течение 10 минут. Способ по изобретению обеспечивает упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул за счет увеличения выхода по массе. 6 ил., 5 пр.

Формула изобретения RU 2 565 408 C1

Способ получения микрокапсул аминокислот в оболочке из альгината натрия, характеризующийся тем, что аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек, затем приливают этанол и воду, полученную суспензию отфильтровывают и сушат при комнатной температуре, а процесс осуществляют в течение 10 мин.

Документы, цитированные в отчете о поиске Патент 2015 года RU2565408C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
Жан-Мари ЛЕН, Супрамолекулярная химия: Концепции и перспективы, - Новосибирск "Наука", Сибирское предприятие РАН, 1998, стр.210-211
СОЛОДОВНИК В.Д
"Микрокапсулирование", - Москва, "Химия", 1980, стр.136-139
Способ получения микрокапсул 1978
  • Нижник Валерий Васильевич
  • Жартовский Владимир Михайлович
  • Баранова Анна Ивановна
SU676316A1
Способ получения микрокапсул 1976
  • Герберт Бенсон Шер
SU707510A3
МИКРОКАПСУЛА ДЛЯ ДЛИТЕЛЬНОГО ВЫСВОБОЖДЕНИЯ ФИЗИОЛОГИЧЕСКИ АКТИВНОГО ПЕПТИДА 1993
  • Хироаки Окада[Jp]
  • Яйой Иноуе[Jp]
  • Ясуаки Огава[Jp]
RU2098121C1
WO 1987001587 A1, 26.03.1987

RU 2 565 408 C1

Авторы

Кролевец Александр Александрович

Покровский Михаил Владимирович

Богачев Илья Александрович

Якушев Владимир Иванович

Гудырев Олег Сергеевич

Ремизов Павел Павлович

Соболев Михаил Сергеевич

Даты

2015-10-20Публикация

2014-04-02Подача