СПОСОБ ФИЛЬТРАЦИИ АЭРОЗОЛЕЙ В ЗЕРНИСТОМ ФИЛЬТРЕ Российский патент 2015 года по МПК B01D46/30 

Описание патента на изобретение RU2569099C1

Изобретение относится к области газоочистки и может применяться для очистки дымовых газов от сажевых частиц, для разделения других аэродисперсных систем.

Известен способ фильтрации в зернистом фильтре, содержащем секции, включающие камеры запыленного и очищенного газа, между которыми размещен слой зернистого материала из песка, гравия, резины, коллекторы для подачи запыленного и отвода очищенного газа и устройства для регенерации зернистого материала (Ужов В.Н., Мягков Б.И. Очистка промышленных газов фильтрами. М.: «Химия», 1970, с. 270, рис. VI, 6). Недостатками такого способа являются возможность загрязнения улавливаемого целевого продукта частицами слоя, наличие которых в техническом углероде не допускается действующим ГОСТ, а также низкая эффективность очистки газов от сажи.

Известен также способ фильтрации, осуществляемый в фильтре для очистки газов от сажи, содержащем камеры запыленного и очищенного газа, между которыми размещен слой гранул углерода, а каждая секция снабжена форкамерой, расположенной между коллектором запыленного газа и камерой запыленного газа (а.с. СССР №869797, прототип).

Недостатком указанного способа является низкая эффективность улавливания высокодисперсных аэрозольных частиц сажи при высоких энергетических затратах.

Цель изобретения - повышение эффективности очистки газов и снижение затрат на ее осуществление.

Способ фильтрации аэрозолей в зернистом фильтре включает подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м3 и высотой фильтрующего слоя 100-200 мм, причем аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин.

Предлагаемый способ фильтрации аэрозолей в зернистом фильтре обеспечивает высокую эффективность фильтрации высокодисперсных аэрозолей при малых концентрациях твердой фазы за счет укрупнения тонких частиц аэрозоля при дополнительном пропускании его через запыленный зернистый слой в обратном направлении, когда резко возрастает концентрация твердой фазы в аэрозоле. При этом обеспечивается регенерация запыленного слоя потоком аэрозоля и удаление уловленной твердой фазы из фильтрующего слоя тем же потоком аэрозоля.

Осуществление предложенного способа фильтрации аэрозолей может быть достигнуто в установке зернистого фильтра, содержащего несколько секций с максимальным использованием рабочего объема при минимальной металлоемкости его. При этом исключается необходимость в использовании специальной тягодутьевой машины для осуществления регенерации фильтрующего слоя.

В качестве зернистого материала фильтрующего слоя может быть применен, например, гранулированный технический углерод с размером гранул 0,5-3,0 мм и насыпной плотностью 300-1000 кг/м3. Высота фильтрующего слоя, размещенного на аэродинамической решетке секции фильтра, может составлять 100-200 мм. При этом скорость пропускания аэрозоля через запыленный слой фильтрующего материала не должна быть менее 0,5 м/с, так как при скорости менее 0,5 м/с не обеспечивается равномерное ожижение слоя потоком аэрозоля. Она не должна быть более 1,5 м/с, так как при скорости более 1,5 м/с не исключен унос гранул фильтрующего материала из слоя, может быть слишком высоким аэродинамическое сопротивление фильтра, снижается эффективность фильтрации аэрозоля. Время регенерации запыленного слоя потоком аэрозоля не должно быть менее 20 с, так как в этом случае не обеспечивается полное удаление уловленных частиц из фильтрующего слоя, но не должно быть более 40 с, так как при этом не исключено падение эффективности фильтрации аэрозоля (проскок уловленных частиц через фильтрующий слой). Регенерацию запыленного слоя осуществляют периодически через интервал не менее 3 мин, когда время регенерации 20 с, и не более 20 мин, когда время регенерации слоя 40 с.

На чертеже представлена принципиальная схема установки зернистого фильтра.

Установка содержит входной патрубок 1, соединенный с клапаном 2, подсоединенным трубопроводами 3 и 4 к камерам 5 и 6, отделенными от камер 7 и 8 слоями 9 и 10 зернистого фильтрующего материала, расположенного на аэродинамических решетках 11 и 12. Камеры 7 и 8 соединены с клапанами 13 и 14 трубопроводами 15 и 16. Клапан 13 соединен с входным патрубком 17 циклона 18, а клапан 14 - с трубопроводом 19 выхода аэрозоля из циклона 18, снабженного шлюзовым питателем 20. Камеры 5 и 6 соединены также с клапаном 21, подсоединенным к трубопроводу 22. Установка может содержать 2-16 секций, соединенных между собой коллектором для подвода аэрозоля (к нему подсоединяют патрубки 1), коллектором, к которому подсоединяют патрубки 17, коллектором, объединяющим трубопроводы 19, и коллектором очищенного газа, к которому подсоединяют трубопроводы 22

Аэрозоль с температурой до 400°C, давлением до 7,0 кПа с содержанием аэрозольных частиц 0,1-0,5 г/м3 подают через входной патрубок 1, клапан 2, трубопровод 3 и камеру 5, пропускают снизу вверх через запыленный слой 9, расположенный на перфорированной решетке 11, в камеру 7, и далее по трубопроводу 15 через клапан 13 и входной патрубок 17 в циклон 18, где уловленная пыль осаждается и удаляется шлюзовым затвором 20, а аэрозоль с укрупненными твердыми частицами по трубопроводу 19 через клапан 14 и трубопровод 16 подают в камеру 8, пропускают сверху вниз через фильтрующий зернистый слой 10, расположенный на перфорированной решетке 12, в камеру 6 и далее по трубопроводу 4 через клапан 21 трубопроводом 22 выводят в атмосферу. По окончании регенерации запыленного слоя 9 через 20-40 с клапаном 13 запирают вход в патрубок 17, а клапаном 14 - вход в него из трубопровода 19. При этом аэрозоль из камеры 7 по трубопроводу 15 через клапаны 13 и 14 подают, минуя циклон 18, через трубопровод 16 в камеру 8, далее через слой 10 и решетку 12 по трубопроводу 4 через клапан 21 и трубопровод 22 направляют в атмосферу. По окончании фильтрации аэрозоля через фильтрующий слой 10, через 3-20 мин клапаном 21 запирают вход в трубопровод 3, клапаном 13 - вход в него из трубопровода 15, клапаном 14 - выход из него в трубопровод 16 и клапаном 21 - вход в него из трубопровода 4. При этом аэрозоль подают через входной патрубок 1, клапан 2, трубопровод 4, камеру 6 и решетку 12 снизу вверх через запыленный слой 10, камеру 8, трубопровод 16, клапан 13, патрубок 17, циклон 18, трубопровод 19, клапан 14, трубопровод 15, камеру 7, сверху вниз через фильтрующий слой 9, решетку 11, камеру 5, трубопровод 3, клапан 21, трубопровод 22. По окончании регенерации запыленного слоя 10 через 20-40 с клапаном 13 запирают вход в патрубок 17, а клапаном 14 - вход в него из трубопровода 19. При этом аэрозоль из камеры 8 через трубопровод 16, клапаны 13 и 14 подают, минуя циклон 18, через трубопровод 15, камеру 7 и далее через фильтрующий слой 9, решетку 11, камеру 5, трубопровод 3, клапан 21 и трубопровод 22. В это время осуществляют регенерацию фильтрующего зернистого слоя 10 в других секциях фильтра, подсоединенных к циклону 18 своими клапанами 13 и 14 (на чертеже не показано).

Пример 1. Отработанные газы дизеля, представляющие собой аэрозоль с содержанием сажевых частиц 350 мг/м3 с температурой 300°C и давлением 4,0 кПа, подают сначала под слой гранулированного технического углерода снизу вверх со скоростью 0,5 м/с, затем - сверху вниз через слой гранулированного технического углерода с той же скоростью. Размер гранул слоя составляет 1,0-2,0 мм, насыпная плотность слоя 750 кг/м3, высота слоя 150 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 15 мин, время регенерации слоя 40 с. Уловленная в слое сажа осаждалась в циклоне.. Аэродинамическое сопротивление фильтра составило 3,0 кПа, запыленность газов на выходе из фильтра 25 мг/м3. Эффективность фильтрации аэрозоля 92,5%.

Пример 2. Аэрозоль с содержанием сажевых частиц 200 мг/м3 температурой 350°C и давлением 7,0 кПа подают под слой гранул технического углерода снизу вверх со скоростью 1,5 м/с, затем сверху вниз через слой таких же гранул и с той же скоростью. Размер гранул слоя составляет 1,0-1,6 мм, насыпная плотность 400 кг/м3, высота слоя 150 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 3 мин, время регенерации 30 с. Уловленная в слое сажа осаждалась в циклоне. Сопротивление фильтра составило 6,6 кПа, запыленность газов на выходе из фильтра составила 20 мг/м3, эффективность фильтрации аэрозоля 90%.

Пример 3. Сажевый аэрозоль с концентрацией сажи 250 мг/м3, температурой 320°C и давлением 4,5 кПа подают под слой гранул технического углерода снизу вверх со скоростью 1 м/с, затем сверху вниз через слой гранул с той же скоростью. Размер гранул составляет 1,0-2,0 мм, насыпная плотность слоя 780 кг/м3, высота слоя 150 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 10 мин, время регенерации 30 с. Уловленная сажа осаждалась в циклоне. Сопротивление фильтра составило 5,5 кПа, запыленность газов на выходе 23 мг/м3. Эффективность фильтрации аэрозоля 91%.

Пример 4. Сажевый аэрозоль с концентрацией сажи 210 мг/м3, температурой 370°C и давлением 6,5 кПа подают под слой гранул технического углерода снизу вверх со скоростью 0,5 м/с, затем сверху вниз через слой гранул с той же скоростью. Размер гранул составляет 0,5-1,0 мм, насыпная плотность слоя 350 кг/м3, высота слоя 200 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 4 мин, время регенерации 20 с. Уловленная сажа осаждалась в циклоне. Сопротивление фильтра составило 6,0 кПа, запыленность газов на выходе 15 мг/м3. Эффективность фильтрации аэрозоля 93%.

Пример 5. Сажевый аэрозоль с концентрацией сажи 150 мг/м3, температурой 390°C и давлением 7,0 кПа подают под слой гранул технического углерода снизу вверх со скоростью 1,2 м/с, затем сверху вниз через слой гранул с той же скоростью. Размер гранул составляет 2,5-3,0 мм, насыпная плотность слоя 900 кг/м3, высота слоя 170 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 20 мин, время регенерации 40 с. Уловленная сажа осаждалась в циклоне. Сопротивление фильтра составило 6,5 кПа, запыленность газов на выходе 15 мг/м3. Эффективность фильтрации аэрозоля 90%.

В результате экспериментальных исследований установлено, что эффективность фильтрации аэрозоля предлагаемым способом на 10-12% выше, чем известным способом фильтрации аэрозоля в зернистом фильтре. Регенерация фильтрующего зернистого слоя потоком аэрозоля обеспечивает надежную работу фильтра без дополнительных затрат на нагнетание очищенного газа.

Похожие патенты RU2569099C1

название год авторы номер документа
ЗЕРНИСТЫЙ ФИЛЬТР ДЛЯ ВЫДЕЛЕНИЯ ВЫСОКОДИСПЕРСНОЙ САЖИ ИЗ АЭРОЗОЛЬНЫХ ПОТОКОВ 2006
  • Шопин Виктор Михайлович
  • Супонев Константин Викторович
  • Дмитриев Константин Игоревич
RU2317134C1
СПОСОБ ОСАЖДЕНИЯ ВЫСОКОДИСПЕРСНЫХ АЭРОЗОЛЕЙ 2015
  • Шопин Виктор Михайлович
  • Лихолобов Владимир Александрович
  • Супонев Константин Викторович
RU2593299C1
Фильтр для очистки газов от сажи 1977
  • Шопин Виктор Михайлович
  • Туренко Леонид Григорьевич
  • Суровикин Виталий Федорович
  • Супонев Константин Викторович
SU869797A1
СПОСОБ ПРОИЗВОДСТВА ТЕХНИЧЕСКОГО УГЛЕРОДА (САЖИ) 2004
  • Шопин Виктор Михайлович
  • Супонев Константин Викторович
RU2285025C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕХНИЧЕСКОГО УГЛЕРОДА 2014
  • Шопин Виктор Михайлович
  • Супонев Константин Викторович
  • Лихолобов Владимир Александрович
  • Дмитриев Константин Игоревич
RU2575035C1
Способ выделения сажи из саже-ВОгО АэРОзОля 1977
  • Шопин Виктор Михайлович
  • Туренко Леонид Григорьевич
  • Суровикин Виталий Федорович
  • Супонев Константин Викторович
SU833285A1
Устройство для улавливания сажи 1983
  • Шопин Виктор Михайлович
  • Супонев Константин Викторович
  • Кожин Виталий Петрович
  • Шпраер Виктор Карлович
  • Никифоров Сергей Иванович
  • Ткаченко Виктор Николаевич
  • Шидловский Анатолий Викторович
SU1139478A1
Способ очистки высокотемпературных аэрозолей 2017
  • Суюнов Рамиль Равильевич
RU2674967C1
Газоочистное устройство 1989
  • Блинов Лев Андреевич
SU1685538A1
Фильтр для очистки газа 1980
  • Измоденов Юрий Алексеевич
  • Кашичкин Юрий Николаевич
  • Фабрициев Виктор Александрович
  • Трощенко Геннадий Яковлевич
  • Хохлачев Борис Александрович
  • Федик Алим Александрович
SU912226A1

Реферат патента 2015 года СПОСОБ ФИЛЬТРАЦИИ АЭРОЗОЛЕЙ В ЗЕРНИСТОМ ФИЛЬТРЕ

Изобретение относится к области газоочистки и может применяться для очистки дымовых газов от сажевых частиц, для разделения других аэродисперсных систем. Способ фильтрации аэрозолей в зернистом фильтре включает подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м3 и высотой фильтрующего слоя 100-200 мм. Аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин. Технический результат: повышение эффективности очистки газов и снижение затрат на ее осуществление. 1 ил., 5 пр.

Формула изобретения RU 2 569 099 C1

Способ фильтрации аэрозолей в зернистом фильтре, включающий подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м3 и высотой фильтрующего слоя 100-200 мм, отличающийся тем, что аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин.

Документы, цитированные в отчете о поиске Патент 2015 года RU2569099C1

Фильтр для очистки газов от сажи 1977
  • Шопин Виктор Михайлович
  • Туренко Леонид Григорьевич
  • Суровикин Виталий Федорович
  • Супонев Константин Викторович
SU869797A1
ЗЕРНИСТЫЙ ФИЛЬТР ДЛЯ ВЫДЕЛЕНИЯ ВЫСОКОДИСПЕРСНОЙ САЖИ ИЗ АЭРОЗОЛЬНЫХ ПОТОКОВ 2006
  • Шопин Виктор Михайлович
  • Супонев Константин Викторович
  • Дмитриев Константин Игоревич
RU2317134C1
Зернистый фильтр 1988
  • Гончаренко Владимир Константинович
  • Алексеев Николай Иванович
  • Захарюта Татьяна Алексеевна
SU1623727A1
GB 1487313 A, 28.09.1977.

RU 2 569 099 C1

Авторы

Шопин Виктор Михайлович

Супонев Константин Викторович

Лихолобов Владимир Александрович

Дмитриев Константин Игоревич

Даты

2015-11-20Публикация

2014-10-17Подача