Изобретение относится к области синтеза ароматических полиамидокислот с концевыми реакционноспособными группами и с заданной степенью полимеризации и может быть использовано для получения этих полимеров в случае применения высокоактивных мономеров.
Ароматические полиамидокислоты являются промежуточными продуктами в двухстадийном синтезе ароматических полиимидов - полимеров, обладающих комплексом ценных термических, механических и диэлектрических свойств и широко применяющихся в таких областях современной техники, как микроэлектроника, авиационная и ракетная техника. Из полиамидокислот с концевыми реакционноспособными группами могут быть получены соответствующие полиимиды. Это делает возможным за счет отверждения по полимеризационному механизму без выделения летучих изготовление изделий с повышенной механической прочностью, а также с высокими термо- и теплостойкостью.
Синтез ароматических полиамидокислот обычно проводится при температуре, близкой к комнатной, в среде апротонных амидных растворителей, например в N-метилпирролидоне, добавлением твердого диангидрида тетракарбоновой кислоты в раствор диамина. В то же время для поликонденсации высокоактивных мономеров (диангидрида тетракарбоновой кислоты и диамина) характерен ряд особенностей:
- высокая скорость реакции, которая сопровождается соответственно быстрым ростом степени полимеризации полимера и вязкости реакционного раствора. Часто это вызывает ухудшение условий перемешивания и отвода тепла из зоны реакции, что, в свою очередь, приводит к локальному росту температуры, еще большему увеличению скорости реакции и уже неуправляемому росту степени полимеризации полимера и вязкости реакционного раствора. В результате образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование;
- быстрый и неуправляемый рост степени полимеризации полимера и вязкости реакционного раствора, происходящий даже при небольших изменениях в условиях синтеза (смена партии мономера, изменение содержания воды в растворителе, изменение объема реакционного раствора или его концентрации по полимеру и т.п.). В результате образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование;
- значительный разброс результатов синтеза по степени полимеризации получаемых полиамидокислот, что затрудняет получение качественных изделий из полиимидов.
Таким образом, в случае использования высокоактивных мономеров актуальна задача получения полиамидокислот с концевыми реакционноспособными группами и с заданной степенью полимеризации.
Известен способ регулирования степени полимеризации полимера при поликонденсации через нарушение стехиометрического соотношения функциональных групп: Л.Б. Соколов. Основы синтеза полимеров методом поликонденсации. М.: Химия, 1979 г., с. 65-67, принятый автором за аналог. В данном способе снижение молекулярной массы полимера достигается применением молярного избытка одного из двух мономеров.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится его неэффективность при использовании высокоактивных мономеров, т.к. в этом случае сохраняется высокая скорость реакции, сопровождающаяся соответственно быстрым ростом степени полимеризации полимера и вязкости реакционного раствора. Часто это вызывает ухудшение условий перемешивания и отвода тепла из зоны реакции, что, в свою очередь, приводит к локальному росту температуры, еще большему увеличению скорости реакции и уже неуправляемому росту степени полимеризации полимера. В таких случаях образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование.
Таким образом, задачей данного технического решения (аналога) являлось получение полиамидокислот из мономеров умеренной активности.
Наиболее близким по технической сути и достигаемому техническому результату является способ регулирования степени полимеризации полимера, описанный в статье «Поликонденсация» в Энциклопедии полимеров, М.: Советская энциклопедия, т. 2, 1974, с. 864-865, принятый автором за прототип. В данном способе для регулирования степени полимеризации полимера, получаемого методом поликонденсации, применяется добавка монофункционального соединения. Увеличение количества монофункционального соединения, добавленного в реакционный раствор, приводит к закономерному уменьшению степени полимеризации полимера. В то же время, этап поликонденсации, на котором в реакционный раствор вводится добавка монофункционального соединения, в прототипе не определен.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится его неэффективность при использовании высокоактивных мономеров, т.к. неопределенность этапа поликонденсации, на котором в реакционный раствор вводится добавка монофункционального соединения с реакционноспособной группой, приводит к возможности возникновения условий, при которых высокая скорость реакции вызывает соответственно быстрый рост молекулярной массы полимера и вязкости реакционного раствора. Часто это вызывает ухудшение условий перемешивания и отвода тепла из зоны реакции, что, в свою очередь, приводит к локальному росту температуры, еще большему увеличению скорости реакции и уже неуправляемому росту степени полимеризации полимера. В таких случаях образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование.
Таким образом, задачей данного технического решения (прототипа) являлось получение полиамидокислот из мономеров умеренной активности.
Общими признаками с предлагаемым способом поликонденсации является добавление в реакционную систему монофункционального соединения.
В отличие от прототипа в предлагаемом способе синтез полиамидокислот проводится в три стадии: поликонденсация диамина с диангидридом тетракарбоновой кислоты, взятом в количестве от 0,84 до 0,98 моля на 1 моль диамина, затем конденсация с ангидридом дикарбоновой кислоты, содержащим реакционноспособную группу, и далее поликонденсация с диангидридом тетракарбоновой кислоты. При этом диангидрид тетракарбоновой кислоты (первая стадия процесса) и ангидрид дикарбоновой кислоты, содержащий реакционноспособную группу, (вторая стадия процесса) вводят в реакционный раствор в количествах, которые рассчитываются на основе выбранной конечной степени полимеризации полиамидокислоты, а диангидрид тетракарбоновой кислоты (третья стадия процесса) берут в дополняющем до эквимолярного к диамину количестве.
Именно это позволяет сделать вывод о наличии причинно-следственной связи между совокупностью существенных признаков заявляемого технического решения и достигаемым техническим результатом.
Указанные признаки, отличительные от прототипа и на которые распространяется испрашиваемый объем правовой защиты, во всех случаях достаточны.
Задачей предлагаемого изобретения является получение из высокоактивных мономеров (диангидрида тетракарбоновой кислоты и диамина) полиамидокислот с концевыми реакционноспособными группами и с заданной степенью полимеризации.
Указанный технический результат при осуществлении изобретения достигается тем, что процесс поликонденсации, заключающийся в добавлении порошкообразного твердого диангидрида тетракарбоновой кислоты в раствор диамина в амидном апротонном растворителе, в отличие от прототипа, проводят в три стадии: поликонденсация диамина с диангидридом тетракарбоновой кислоты, взятом в количестве 0,84 до 0,98 моля на 1 моль диамина, затем конденсация с ангидридом дикарбоновой кислоты, содержащим реакционноспособную группу, и далее поликонденсация с диангидридом тетракарбоновой кислоты. При этом диангидрид тетракарбоновой кислоты (первая стадия процесса) и ангидрид дикарбоновой кислоты, содержащий реакционноспособную группу, (вторая стадия процесса) вводят в реакционный раствор в количествах, которые рассчитываются на основе выбранной конечной степени полимеризации полиамидокислоты, а диангидрид тетракарбоновой кислоты (третья стадия процесса) берут в дополняющем до эквимолярного к диамину количестве.
Новая совокупность операций, а также наличие связей между ними позволяют, в частности, за счет:
- введения в раствор диамина диангидрида тетракарбоновой кислоты в количестве от 0,84 до 0,98 моля на 1 моль диамина обеспечить получение полиамидокислоты с заданной конечной степенью полимеризации и реакционный раствор, пригодный для дальнейшей переработки. При соотношении менее 0,84 моля диангидрида тетракарбоновой кислоты на 1 моль диамина конечная степень полимеризации полиамидокислот будет недостаточна для получения покрытия, пленки или волокна. При соотношении более 0,98 моля диангидрида тетракарбоновой кислоты на 1 моль диамина возможен неуправляемый рост степени полимеризации полимера и вязкости реакционного раствора. В таких случаях образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование;
- конденсации с ангидридом дикарбоновой кислоты, содержащим реакционноспособную группу, ввести в полимер концевые реакционноспособные группы и исключить возможность неуправляемого роста степени полимеризации полимера и вязкости реакционного раствора. В таких случаях образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование;
- поликонденсации с диангидридом тетракарбоновой кислоты, взятом в дополняющем до эквимолярного к диамину количестве, получать полиамидокислоты с заданной конечной степенью полимеризации. Если взять диангидрид тетракарбоновой кислоты в количестве, меньшем, чем дополняющее до эквимолярного к диамину, то возможен неуправляемый рост степени полимеризации полимера и вязкости реакционного раствора. В таких случаях образуется раствор с настолько высокой вязкостью, что это делает невозможным его дальнейшее использование. Если взять диангидрид тетракарбоновой кислоты в количестве, большем, чем дополняющее до эквимолярного к диамину, то конечная степень полимеризации полиамидокислоты будет недостаточна для дальнейшего использования.
- В частных случаях конкретного выполнения: в качестве диамина используют следующие соединения: 4,4′-диаминотрифениламин, и/или 4,4-диаминодифениламин, и/или 1,4-фенилендиамин;
- в качестве диангидрида тетракарбоновой кислоты используют следующие соединения: диангидрид 3,3′,4,4′-бензофенонтетракарбоновой кислоты, и/или диангидрид 3,3′,4,4′-дифенилсульфонтетракарбоновой кислоты, и/или диангидрид пиромеллитовой кислоты, и/или диангидрид 3,3′,4,4′-дифенилтетракарбоновой кислоты;
- в качестве ангидрида дикарбоновой кислоты, содержащего реакционноспособную группу, используют малеиновый ангидрид или ангидрид эндо-цис-5-норборнен-2,3-дикарбоновой кислоты (эндиковый ангидрид);
- диангидрид тетракарбоновой кислоты (первая стадия процесса) и ангидрид дикарбоновой кислоты, содержащий реакционноспособную группу (вторая стадия процесса), вводят в реакционный раствор в количествах, которые рассчитывают на основе выбранной величины конечной степени полимеризации полиамидокислоты в соответствии с уравнениями (1-17):
- где nΣ - средняя конечная степень полимеризации полиамидокислоты с концевыми реакционноспособными группами; n1 - средняя степень полимеризации олигоамидокислоты, полученной на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты); n2 - средняя степень полимеризации полиамидокислоты - продукта взаимодействия олигоамидокислоты, полученной на второй стадии процесса (после добавления ангидрида дикарбоновой кислоты) со второй порцией диангидрида; q1 - коэффициент неэквивалентности амино- и ангидридных групп на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты); q3 - коэффициент неэквивалентности амино- и ангидридных групп на третьей стадии процесса (при добавлении второй порции диангидрида); Nангидрида1 - количество ангидридных групп в первой порции диангидрида тетракарбоновой кислоты, моль; Nамина - количество аминогрупп в диамине, моль; Nангидрида - количество ангидридных групп в диангидриде (обе порции), моль; ММдиангидрида - молярная масса диангидрида тетракарбоновой кислоты, г/г-моль; mдиангидрида1 - вес диангидрида, добавленного на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты), г; mдиамина - вес диамина, г; ММдиамина - молярная масса диамина, г/г-моль; Рмфс - молярная доля ангидрида дикарбоновой кислоты по отношению к диамину, %мольн к Мдиамина, k - среднее количество молекул диангидрида тетракарбоновой кислоты, вошедших в состав молекулы олигоамидокислоты, полученной на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты); Nамина2 - количество аминогрупп в олигоамидокислоте до добавления ангидрида дикарбоновой кислоты (перед началом второй стадии процесса), г-моль; Nамина3 - количество аминогрупп в олигоамидокислоте после взаимодействия с ангидридом дикарбоновой кислоты (перед началом третьей стадии процесса), моль; mмфс - вес ангидрида дикарбоновой кислоты, добавленного на второй стадии процесса, г; ММмфс - молярная масса ангидрида дикарбоновой кислоты (98,06 для малеинового ангидрида, 160,13 для эндикового ангидрида), г/г-моль; mдиангидрида3 - вес диангидрида, добавленного на третьей стадии процесса, г; Мдиангидрида - общее количество молей диангидрида; Мдиамина - общее количество молей диамина;
- диангидрид тетракарбоновой кислоты, добавляемый на третьей стадии процесса, берут в дополняющем до эквимолярного к диамину количестве.
Сущность предлагаемого изобретения поясняется следующими примерами.
Пример 1
Поликонденсация 4,4′-диаминотрифениламина с диангидридом 3,3′,4,4′ -бензофенонтетракарбоновой кислоты
В колбу вместимостью 2 дм3, охлаждаемую водяной баней, заливают 1709 мл N-метилпирролидона и порциями, при постоянном перемешивании, не допуская образования комков твердого вещества, вносят 165,23 г (0,6 М) 4,4′-диаминотрифениламина. После полного растворения диамина в колбу порциями, при постоянном перемешивании, в течение 40-45 мин вносят 185,22 г (0,575 М) диангидрида 3,3′,4,4′-бензофенонтетракарбоновой кислоты, не допуская разогрева реакционного раствора выше 50°C, после чего продолжают перемешивание в течение еще 2 часов. В полученный раствор олигоамидокислоты добавляют одной порцией 0,8825 г. (0,009 М) малеинового ангидрида и перемешивают в течение 2 часов. В полученный раствор добавляют одной порцией 8,0559 г (0,025 М) диангидрида 3,3′,4,4′-бензофенонтетракарбоновой кислоты. Продолжают перемешивание реакционного раствора в течение еще 2 часов. Логарифмическая вязкость 0,5% раствора полученной полиамидокислоты с концевыми реакционноспособными группами в N-метилпирролидоне при 25°C - 1,61 дл/г.
Пример 2
Поликонденсация 4,4′-диаминотрифениламина и 1,4-фенилендиамина с диангидридом пиромеллитовой кислоты
В колбу вместимостью 2 дм3, охлаждаемую водяной баней, заливают 516 мл Ν,Ν′-диметилформамида и порциями, при постоянном перемешивании, не допуская образования комков твердого вещества, вносят 33,05 г (0,12 М) 4,4′-диаминотрифениламина и 6,4884 г (0,06 M) 1,4-фенилендиамина. После полного растворения диаминов в колбу при постоянном перемешивании в течение 30-35 мин добавляют 37,30 г (0,171 М) диангидрида пиромеллитовой кислоты, не допуская разогрева реакционного раствора выше 50°C, и продолжают перемешивание в течение еще 2 часов. В полученный раствор олигоамидокислоты добавляют одной порцией 0,4865 г (0,003 М) ангидрида эндо-цис-5-норборнен-2,3-дикарбоновой кислоты (эндиковый ангидрид) и перемешивают в течение еще 2 часов. В полученный раствор добавляют одной порцией 1,9629 г (0,009 М) диангидрида пиромеллитовой кислоты. Продолжают перемешивание реакционного раствора в течение еще 2 часов. Логарифмическая вязкость 0,5% раствора полученной полиамидокислоты с концевыми реакционноспособными группами в Ν,Ν′-диметилформамиде при 25°C - 1,80 дл/г.
Таким образом, проведение синтеза полиамидокислоты в три стадии: поликонденсация диамина с диангидридом тетракарбоновой кислоты, взятом в количестве от 0,84 до 0,98 моля на 1 моль диамина, затем конденсация с ангидридом дикарбоновой кислоты, содержащим реакционноспособную группу, и далее поликонденсация с диангидридом тетракарбоновой кислоты, взятом в дополняющем до эквимолярного к диамину количестве, позволяет получить из высокоактивных мономеров (диангидрида тетракарбоновой кислоты и диамина) полиамидокислоты с заданной степенью полимеризации и с концевыми реакционноспособными группами, а также реакционный раствор, пригодный для дальнейшего использования. Изобретение может применяться для получения полиамидокислот с концевыми реакционноспособными группами из высокоактивных мономеров.
Указанный положительный эффект подтвержден рядом успешных синтезов полиамидокислот с концевыми реакционноспособными группами в лабораторных и в полупромышленных условиях.
На основании предлагаемого изобретения разработана технологическая документация, по которой осуществлен синтез полиамидокислот с концевыми реакционноспособными группами из высокоактивных мономеров.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОКИСЛОТ С ЗАДАННОЙ СТЕПЕНЬЮ ПОЛИМЕРИЗАЦИИ ИЗ ВЫСОКОАКТИВНЫХ МОНОМЕРОВ | 2014 |
|
RU2544997C1 |
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ПОЛИАМИДОКИСЛОТЫ НА ОСНОВЕ 4,4'-ДИАМИНОТРИФЕНИЛАМИНА | 2007 |
|
RU2352595C2 |
Способ получения расплавных полиимидных связующих полимеризационного типа | 2017 |
|
RU2666734C1 |
ВЫСОКОСЕЛЕКТИВНЫЕ ПОЛИИМИДНЫЕ МЕМБРАНЫ С ПОВЫШЕННОЙ ПРОПУСКАЮЩЕЙ СПОСОБНОСТЬЮ, ПРИЧЕМ УКАЗАННЫЕ МЕМБРАНЫ ВКЛЮЧАЮТ БЛОК-СОПОЛИИМИДЫ | 2014 |
|
RU2663831C1 |
ТЕПЛОСТОЙКИЙ ПЛЁНОЧНЫЙ КЛЕЙ | 2021 |
|
RU2760127C1 |
Способ термостабилизации полиимидов | 1977 |
|
SU670126A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОКИСЛОТЫ И ПОЛИИМИДА НА ЕЕ ОСНОВЕ | 2008 |
|
RU2398790C2 |
СПОСОБ ПОЛУЧЕНИЯ СИЛОКСАНОСОДЕРЖАЩИХ ПОЛИИМИДОВ | 2005 |
|
RU2270842C1 |
ПАТЕНТШ-ТЕХ1-ШНЕГНйЯБИБЛИОТЕКА | 1970 |
|
SU281295A1 |
НИТИ ИЗ ПОЛНОСТЬЮ АРОМАТИЧЕСКИХ ПОЛИИМИДОВ С ВЫСОКИМ УРОВНЕМ РАВНОМЕРНОСТИ ФИЗИКО-МЕХАНИЧЕСКИХ ПОКАЗАТЕЛЕЙ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2015 |
|
RU2603796C2 |
Изобретение относится к области синтеза ароматических полиамидокислот - промежуточного продукта в синтезе полиимидов. Синтез проводится в три стадии: поликонденсация диамина с диангидридом тетракарбоновой кислоты, взятом в расчетном молярном недостатке по отношению к диамину, затем конденсация с расчетным количеством ангидрида дикарбоновой кислоты, содержащего реакционноспособную группу, и далее поликонденсация с диангидридом тетракарбоновой кислоты, взятом в дополняющем до эквимолярного к диамину количестве. Технический результат - получение полиамидокислот с концевыми реакционноспособными группами и с заданной степенью полимеризации в случае применения высокоактивных мономеров. 5 з.п. ф-лы, 2 пр.
1. Способ получения полиамидокислот с концевыми реакционноспособными группами и с заданной степенью полимеризации поликонденсацией высокоактивных мономеров, заключающийся в добавлении к раствору диамина твердых порошкообразных диангидрида тетракарбоновой кислоты и ангидрида дикарбоновой кислоты, содержащего реакционноспособную группу, отличающийся тем, что синтез проводят в три стадии: поликонденсация диамина с диангидридом тетракарбоновой кислоты, взятом в количестве от 0,84 до 0,98 моля на 1 моль диамина, затем конденсация с ангидридом дикарбоновой кислоты, содержащим реакционноспособную группу, и далее поликонденсация с диангидридом тетракарбоновой кислоты.
2. Способ по п. 1, отличающийся тем, что в качестве диамина используют следующие соединения: 4,4′-диаминотрифениламин, и/или 4,4′-диаминодифениламин, и/или 1,4-фенилендиамин.
3. Способ по п. 1, отличающийся тем, что в качестве диангидрида тетракарбоновой кислоты используют следующие соединения: диангидрид 3,3′,4,4′-бензофенонтетракарбоновой кислоты, и/или диангидрид 3,3′,4,4′-дифенилсульфонтетракарбоновой кислоты, и/или диангидрид пиромеллитовой кислоты, и/или диангидрид 3,3′,4,4′-дифенилтетракарбоновой кислоты.
4. Способ по п. 1, отличающийся тем, что в качестве ангидрида дикарбоновой кислоты, содержащего реакционноспособную группу, используют малеиновый ангидрид и/или ангидрид эндо-цис-5-норборнен-2,3-дикарбоновой кислоты (эндиковый ангидрид).
5. Способ по п. 1, отличающийся тем, что диангидрид тетракарбоновой кислоты (первая стадия процесса) и ангидрид дикарбоновой кислоты, содержащий реакционноспособную группу (вторая стадия процесса), вводят в реакционный раствор в количествах, которые рассчитывают на основе выбранной величины конечной степени полимеризации полиамидокислоты по уравнениям:
где nΣ - средняя конечная степень полимеризации полиамидокислоты с концевыми реакционноспособными группами; n1 - средняя степень полимеризации олигоамидокислоты, полученной на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты); n2 - средняя степень полимеризации полиамидокислоты - продукта взаимодействия олигоамидокислоты, полученной на второй стадии процесса (после добавления ангидрида дикарбоновой кислоты) со второй порцией диангидрида; q1 - коэффициент неэквивалентности амино- и ангидридных групп на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты); q3 - коэффициент неэквивалентности амино- и ангидридных групп на третьей стадии процесса (при добавлении второй порции диангидрида); Nангидрида1 - количество ангидридных групп в первой порции диангидрида тетракарбоновой кислоты, моль; Nамина - количество аминогрупп в диамине, моль; Nангидрида - количество ангидридных групп в диангидриде (обе порции), моль; ММдиангидрида - молярная масса диангидрида тетракарбоновой кислоты, г/г-моль; mдиангидрида1 - вес диангидрида, добавленного на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты), г; mдиамина - вес диамина, г; ММдиамина - молярная масса диамина, г/г-моль; Рмфс - молярная доля ангидрида дикарбоновой кислоты по отношению к диамину, %мольн к Мдиамина; k - среднее количество молекул диангидрида тетракарбоновой кислоты, вошедших в состав молекулы олигоамидокислоты, полученной на первой стадии процесса (до добавления ангидрида дикарбоновой кислоты); Nамина2 - количество аминогрупп в олигоамидокислоте до добавления ангидрида дикарбоновой кислоты (перед началом второй стадии процесса), г-моль; Nамина3 - количество аминогрупп в олигоамидокислоте после взаимодействия с ангидридом дикарбоновой кислоты (перед началом третьей стадии процесса), моль; mмфс - вес ангидрида дикарбоновой кислоты, добавленного на второй стадии процесса, г; ММмфс - молярная масса ангидрида дикарбоновой кислоты (98,06 для малеинового ангидрида, 160,13 для эндикового ангидрида), г/г-моль; mдиангидрида3 - вес диангидрида, добавленного на третьей стадии процесса, г; Мдиангидрида - общее количество молей диангидрида; Мдиамина - общее количество молей диамина.
6. Способ по п. 1, отличающийся тем, что диангидрид тетракарбоновой кислоты, добавляемый на третьей стадии процесса, берут в дополняющем до эквимолярного к диамину количестве.
Энциклопедия полимеров, М., "Советская энциклопедия", т.2, 1974, с.864-865 | |||
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ПОЛИАМИДОКИСЛОТЫ НА ОСНОВЕ 4,4'-ДИАМИНОТРИФЕНИЛАМИНА | 2007 |
|
RU2352595C2 |
Способ получения полиамидокислот | 1968 |
|
SU522206A1 |
СПОСОБЫ И УСТРОЙСТВО ДЛЯ СНИЖЕНИЯ ТРЕБОВАНИЙ К ПАМЯТИ ДЛЯ ПРИЛОЖЕНИЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ В СИСТЕМАХ КОНТРОЛЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА | 2013 |
|
RU2634220C2 |
US 6187899 B1 13.02.2001. |
Авторы
Даты
2015-11-27—Публикация
2015-02-19—Подача