СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ Российский патент 2016 года по МПК C01G49/08 H01F1/00 

Описание патента на изобретение RU2572418C1

Изобретение относится к получению магнитоактивных соединений.

Частицы магнитоактивных соединений могут образовываться благодаря конденсации отдельных молекул. На размер образующихся частиц существенно влияют условия, при которых происходит конденсация отдельных молекул в частицы, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Одним из вариантов метода конденсации является реакция химической конденсации высокодисперсного магнетита:

2 FeCl3+FeCl2+8 NaOH→Fe3O4↓+8 NaCl+4 H2O.

10%-ные растворы FeCl2·4H2O и FeCl3·6H2O смешивают при 70°C и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения роста частиц использовалось интенсивное перемешивание растворов. Для получения магнетита требуемого состава соотношение солей Fe3+/Fe2+ должно быть 2 к 1 [Elmore W.С.// Phys. Rew., 1938, V. 54, P. 309].

Существуют способы получения магнитных жидкостей и рентгеноконтрастных средств на основе органических соединений. В качестве магнитного компонента использован магнетит, осажденный из смеси солей железа (II) и железа (III) 25%-ным раствором аммония гидроксида. Замена гидроксида натрия на гидроксид аммония позволяет проводить соосаждение солей при 25…40°C [АС СССР №568598 МКл2, С01G 49/08. 1977; АС СССР №861321, МКл2 C01G 49/08. 1981; АС СССР №966015, МКл2 C01G 49/08. 1982; АС СССР №978860, МКл2 А61К 33/26. 1982].

Известен способ, в соответствии с которым первоначально из раствора соли железа (II) осаждается карбонат железа (II), который при температуре 55…60°C в течение 1 ч превращается в магнитоактивный магнетит, отделяемый от жидкости путем декантации до pH 7 [Патент РФ №2230705, МПК7 C01G 49/08. 2004]. Недостатком указанного способа является низкая относительная магнитная восприимчивость образующегося магнитоактивного соединения.

Наиболее близким к предлагаемому способу является способ, по которому магнитоактивное соединение образуется в результате осаждения из подкисленного раствора соли железа(II), которое проводится в присутствии соли азотистой кислоты. К подкисленному раствору соли железа(II) добавляется расчетное количество соли азотистой кислоты, и полученный раствор подщелачивается. Выделяющийся бирюзовый осадок быстро уплотняется и через некоторое время превращается в магнитоактивное соединение с высокой относительной магнитной восприимчивостью [Патент РФ 2476382, МКИ C01G 49/08 (2006.01), 2013]. Недостатком указанного способа является выделение токсичных оксидов азота.

Задачей изобретения является повышение экологической безопасности, т.е. получение магнитоактивного соединения без выделения токсичных оксидов азота.

Это достигается тем, что магнитоактивное соединение получают путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении, отличающийся тем, что в качестве окислителя используют водно-аммиачный раствор нитрата серебра.

Предлагаемый способ осуществляется следующим образом. К раствору сульфата или хлорида железа (II) добавляется расчетный объем аммиачного раствора нитрата серебра. Сразу же образуется осадок, обладающий магнитной активностью.

Пример 1. Для осаждения магнитоактивного соединения смешивали 1 мл концентрированного водного раствора аммиака и 0,2 мл 0,2 М водного раствора нитрата серебра. Затем добавляли 1 мл 0,1 М раствора сульфата железа (II). Реакцию проводили при 23°C. Сразу же выделился осадок, окрашенный в черный цвет. Относительная магнитная восприимчивость (ОМВ), измеренная через 5 мин после смешения реактивов, составила 4,6 г/г железа.

Пример 2. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 7,7 г/г железа.

Пример 3. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 14,4 г/г железа.

Пример 4. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,25 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 14,0 г/г железа.

Пример 5. Конденсацию магнитоактивного соединения проводили в условиях примера 4, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 17,9 г/г железа.

Пример 6. Конденсацию магнитоактивного соединения проводили в условиях примера 4, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 20,9 г/г железа.

Пример 7. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,3 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 16,4 г/г железа.

Пример 8. Конденсацию магнитоактивного соединения проводили в условиях примера 7, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 21,5 г/г железа.

Пример 9. Конденсацию магнитоактивного соединения проводили в условиях примера 7, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 24,4 г/г железа.

Пример 10. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,4 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 19,2 г/г железа.

Пример 11. Конденсацию магнитоактивного соединения проводили в условиях примера 10, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 21,7 г/г железа.

Пример 12. Конденсацию магнитоактивного соединения проводили в условиях примера 10, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 24,2 г/г железа.

Пример 13. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,5 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 19,9 г/г железа.

Пример 14. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 24,1 г/г железа.

Пример 15. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 20,9 г/г железа.

Пример 16. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,75 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 18,2 г/г железа.

Пример 17. Конденсацию магнитоактивного соединения проводили в условиях примера 16, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 19,4 г/г железа.

Пример 18. Конденсацию магнитоактивного соединения проводили в условиях примера 16, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 21,0 г/г железа.

Пример 19. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 1,0 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 12,2 г/г железа.

Пример 20. Конденсацию магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 12,2 г/г железа.

Пример 21. Конденсацию магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 13,4 г/г железа.

Пример 22. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что объем раствора сульфата железа (II) составил 0,9 мл. Относительная магнитная восприимчивость составила 13,4 г/г железа.

Пример 23. Конденсацию магнитоактивного соединения проводили в условиях примера 22, отличающихся тем, что объем раствора аммиака составил 1,1 мл. Относительная магнитная восприимчивость составила 15,7 г/г железа.

Пример 24. Конденсацию магнитоактивного соединения проводили в условиях примера 10, отличающихся тем, что объем раствора аммиака составил 2 мл. Относительная магнитная восприимчивость составила 0,4 г/г железа.

Пример 25. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что конденсацию магнитоактивного соединения проводили при 100°C. Относительная магнитная восприимчивость составила 13,3 г/г железа.

Пример 26. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что добавляли 1 мл 0,1 Μ раствора хлорида железа (II), а продолжительность выдержки реакционной смеси составила 15 минут. Относительная магнитная восприимчивость составила 8,4 г/г железа.

Пример 27. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что добавляли 0,9 мл 0,1 Μ раствора сульфата железа (II). Относительная магнитная восприимчивость составила 10,1 г/г железа.

Пример 28. Конденсацию магнитоактивного соединения проводили в условиях примера 27, отличающихся тем, что продолжительность выдержки реакционной смеси составила 40 минут. Относительная магнитная восприимчивость составила 16,0 г/г железа.

Пример 29. Конденсацию магнитоактивного соединения проводили в условиях примера 27, отличающихся тем, что добавляли 1,1 мл 0,1 Μ раствора сульфата железа (II), а продолжительность выдержки реакционной смеси составила 25 минут. Относительная магнитная восприимчивость составила 17,0 г/г железа.

Результаты, полученные при синтезе магнитоактивного соединения, сведены в таблице, свидетельствуют о том, что предлагаемое решение позволяет получать магнитоактивное соединение без выделения токсичных оксидов азота.

Похожие патенты RU2572418C1

название год авторы номер документа
Способ получения магнитоактивного соединения 2016
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Плахин Вадим Александрович
  • Кузяков Николай Юрьевич
RU2634026C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2015
  • Хабаров Юрий Германович
  • Кузяков Николай Юрьевич
  • Вешняков Вячеслав Александрович
RU2576436C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
RU2453500C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
RU2476382C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2012
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2489359C1
ПЕПТИЗАТОР ДЛЯ СИНТЕЗА МАГНИТОАКТИВНОЙ ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕ 2015
  • Хабаров Юрий Германович
  • Кузяков Николай Юрьевич
  • Вешняков Вячеслав Александрович
  • Бабкин Игорь Михайлович
RU2608417C1
СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТА МЕДИ 2013
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2567652C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА СЛОЖНОГО ОКСИДА ВИСМУТА, ЖЕЛЕЗА И ВОЛЬФРАМА СО СТРУКТУРОЙ ФАЗЫ ПИРОХЛОРА 2023
  • Ломакин Макарий Сергеевич
  • Проскурина Ольга Венедиктовна
  • Гусаров Виктор Владимирович
RU2825757C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАГНИТНОГО МАТЕРИАЛА НА ОСНОВЕ ОКСИДОВ КРЕМНИЯ И ЖЕЛЕЗА 2014
  • Панасенко Александр Евгеньевич
  • Земнухова Людмила Алексеевна
  • Ткаченко Иван Анатольевич
RU2575458C1
Модификатор и способ изменения электрофизических и магнитных свойств керамики 2021
  • Эпштейн Олег Ильич
  • Тарасов Сергей Александрович
  • Буш Александр Андреевич
  • Харчевский Антон Александрович
RU2768221C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ

Изобретение может быть использовано в химической технологии. Магнитоактивное соединение получают путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении. В качестве окислителя используют водно-аммиачный раствор нитрата серебра. Изобретение позволяет получить магнитоактивное соединение без выделения токсичных оксидов азота. 1 табл., 29 пр.

Формула изобретения RU 2 572 418 C1

Способ получения магнитоактивного соединения путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении, отличающийся тем, что в качестве окислителя используют водно-аммиачный раствор нитрата серебра.

Документы, цитированные в отчете о поиске Патент 2016 года RU2572418C1

СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
RU2476382C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2011
  • Королев Виктор Васильевич
  • Яшкова Валентина Ивановна
  • Рамазанова Анна Геннадьевна
  • Королев Дмитрий Викторович
  • Балмасова Ольга Владимировна
RU2462420C1
Способ получения феррожидкости 1975
  • Бибик Ефим Ефимович
  • Лавров Иван Степанович
  • Грибанов Николай Михайлович
  • Котомина Татьяна Михайловна
  • Варенцова Татьяна Адольфовна
SU568598A1
WO 2012130428 A1, 04.10.2012
CN 103449534 A, 18.12.2013.

RU 2 572 418 C1

Авторы

Хабаров Юрий Германович

Бабкин Игорь Михайлович

Вешняков Вячеслав Александрович

Рекун Александр Александрович

Патракеев Александр Андреевич

Сырков Дмитрий Сергеевич

Даты

2016-01-10Публикация

2014-10-16Подача