ПЕПТИЗАТОР ДЛЯ СИНТЕЗА МАГНИТОАКТИВНОЙ ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕ Российский патент 2017 года по МПК H01F1/44 C08H7/00 

Описание патента на изобретение RU2608417C1

Изобретение относится к реагентам, предназначенным для синтеза магнитной жидкости, и касается пептизаторов, предназначенных для формирования магнитной жидкости.

Магнитные жидкости обладают уникальным сочетанием текучести и способностью взаимодействовать с магнитным полем. Их свойства определяются совокупностью характеристик, входящих в нее компонентов (твердой магнитной фазы, дисперсионной среды и стабилизатора), варьируя которые можно в широких пределах изменять физико-химические параметры магнитной жидкости в зависимости от условий их применения. Эффективность применения магнитной жидкости определяется намагниченностью насыщения и устойчивостью к действию гравитационных сил и магнитных полей. Магнитные жидкости при использовании в скоростных уплотнениях и подшипниковых узлах должны обладать низкой вязкостью и испаряемостью в сочетании с высокой термостойкостью, при использовании в качестве магнитных чернил - наоборот, высокой испаряемостью. Магнитные жидкости, предназначенные для использования в биологии и медицине, должны быть нетоксичны и устойчивы при контакте с живыми клетками и тканями организма.

Для получения мелкодисперсных магнитоактивных материалов разработано большое число различных методов, которые можно разделить на два типа.

В методах синтеза первого типа частицы магнитоактивных соединений коллоидных размеров образуются благодаря конденсации отдельных молекул. На размер образующихся частиц влияют условия, при которых происходит объединение отдельных молекул в частицы, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Одним из вариантов метода конденсации является реакция химической конденсации высоко дисперсного магнетита [Elmore W.C. Ferromagnetic colloid for studying magnetic structure // Phys. Rev. - 1938. - Vol. 54, N 4. - P. 309.; Elmore W.C. The magnetization of ferromagnetic colloid // Phys. Rev. - 1938. - Vol. 54, N 12. - P. 1092-1095]:

2 FeCl3 + FeCl2 + 8 NaOH → Fe3O4 ↓ + 8 NaCl + 4 H2O.

10%-ные растворы FeCl2⋅4H2O и FeCl3⋅6H2O смешивают при 70°С и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения роста частиц использовалось интенсивное перемешивание растворов. Для получения магнетита требуемого состава соотношение солей Fe3+/Fe2+ должно быть 2 к 1.

Существуют способы получения магнитных жидкостей и рентгеноконтрастных средств на основе органических соединений. В качестве магнитного компонента использован магнетит, осажденный из смеси солей железа (II) и железа (III) 25%-ным раствором аммония гидроксида [А.с. 568598 СССР, МКл2 С02G 49/08. Способ получения феррожидкости / Бибик Е.Г., Лавров Н.С., Грибанов Н.М., Котомина Т.М., Варенцова Т.А. // Бюл. - 1977. - №30.; А.с. 861321 СССР, МКл3 С01G 49/08. Способ получения феррожидкости / Бибик Е.Г., Грибанов Н.М., Бузунов О.В., Гермашев В.Г. // 1981. - Бюл. - №33.; А.с. 966015 СССР, МКл3 С01G 49/08. Способ получения феррожидкости / Бибик Е.Г., Бузунов О.В., Грибанов Н.М., Гермашев В.Г // Бюл. - 1982. - №38.; А.с. 978860 СССР, МКл3 А61К 33/26. Рентгеноконтрастное вещество / Цыб А.Ф, Амосов И.С, Бибик Е.Е., Грибанов Н.М, Никитина Р.Г., Рожинский М.М., Кугельмас М.К., Шаназаров К.С., Слюсаренко И.С., Граник Е.Н. // Бюл. - 1982. - №45].

Способ синтеза магнетитной магнитной жидкости на водной основе был разработан Нилом [Pat. 4089779 USA, Int. Cl. С02В 1/20. Clarification process / Neal J.A. - 1978.; Pat. 4110208 USA, Int. Cl. С02В 1/20. Clarification process / Neal J.A. - 1978]. Для стабилизации частиц магнетита со средним размером около 10 нм, полученных химической конденсацией, применяли побочный продукт бисульфитной обработки древесины - лигносульфонат натрия.

Методы второго типа синтеза магнитных жидкостей включают в себя различные способы диспергирования крупных частиц магнитоактивных материалов. Первые магнитные жидкости были получены С. Пейпеллом [Pat. 3215572 USA, USA Cl. 149 - 2. Low viskosity magnetic fluid obtaned by the colloidal suspension of magnetic particles / Papell S.S. 1965]. путем мокрого механического измельчения частиц магнетита в шаровых мельницах в течение 1000 ч.

Р. Кайзер усовершенствовал описанный процесс и получил магнитные жидкости на водной основе, органических соединениях (в том числе ароматических углеводородах) и эфирах [Kaiser R., Miskolczy G. Magnetic properties of stable dispersions of subdomain magnetite particle // J. Appl. Phys. - 1970. - Vol. 41, N 3. - P. 1064-1072; Pat. 3700595 USA, Int. Cl. H01F 1/10. Ferrofluid composition / Kaiser R. - 1972].

Кроме механического диспергирования крупных частиц до магнитоактивного материала с образованием частиц коллоидных размеров может быть использовано химическое диспергирование - пептизация, под которой понимается расщепление агрегатов, возникших при коагуляции дисперсных систем, под действием жидкой среды или специальных веществ - пептизаторов. Пептизация применяется в технике при получении высокодисперсных суспензий глин и других веществ.

Предлагается в качестве пептизатора при синтезе магнитной жидкости использовать лигносульфонаты, подвергнутые нитрованию.

Известны различные направления использования нитролигносульфонатов:

1) В производстве бумаги [Чудаков М.И., Русина Н.А., Кирпичева Л.М., Миронова Ю.Я. Модификация лигносульфонатов путем нитрования и использование их при производстве бумаги // ИВУЗ Лесной журнал. - 1977. - №6. - С. 125-127];

2) В строительном производстве для ускорения процессов твердения портландцемента [Топильский Т.В. Влияние нитролигносульфонатов на процессы твердения портланд-цемента // Журнал прикл. химии. - 1981. - т. 54, №1. - С. 7-14];

3) Для обессмоливания сульфитной целлюлозы [Чудаков М.И. и др. Обессмоливание сульфитной целлюлозы растворами нитрованных лигносульфоновых кислот // Бум. пром-сть. - 1973. - №6. - С. 5-6];

4) Для воздействия на вегетацию сорняков и сеянцев ели [Марич С.Н. и др. Оценка воздействия модифицированных лигносульфонатов на вегетацию сорняков и сеянцев ели в лесных питомниках // ИВУЗ Лесной журнал. - 2015. - №3. - С. 59-68];

5) Для производства буровых растворов [Zhang J. at al. Preparation of nitration-oxidation lignosulfonate and the performance in drilling fluid // Petroleum Science and Technology. - 2014. - Vol. 32, Iss. 14. - P. 1661-1668];

6) При решении экологических проблем металлургичесского производства [Пугин К.Г. Разработка противофильтрационного экрана для полигона захоронения отходов металлургии. - Материалы 1-й Международной науч.-практ. конф. "Современные энерго- и ресурсосберегающие технологии. Проблемы и перспективы". - 2009. - Одесса].

Задачей изобретения является расширение круга веществ, которые могут быть использованы в качестве пептизаторов, и более полное использование растительной биомассы.

Для оценки возможности применения нитрованных лигносульфонатов в качестве пептизатора был выполнен эксперимент, в котором доказано пептизирующее действие лигносульфонатов нитрованных в различных условиях.

Нитрование технических лигносульфонатов (ЛСТ) проводили следующим образом. К заданному объему раствора ЛСТ добавляли необходимый объем раствора концентрированной азотной кислоты и выдерживали реакционную смесь в течение 15…60 мин.

Для конденсации магнитоактивного соединения к заданному объему раствора нитрованных ЛСТ добавляли заданный объем раствора сульфата железа (II) и заданный объем раствора щелочного реагента. В этих условиях происходит первоначальное выделение крупнодисперсных частиц, которые постепенно седиментируют. На дне реактора образуется плотный окрашенный осадок, который с течением времени пептизируется. При этом образуется магнитная жидкость, магнитную активность которой измеряли на весах Гуи через заданные промежутки времени.

Пример 1. К 4 мл раствора ЛСТ (концентрация 18,6 мг/мл) добавляли 1 мл концентрированной азотной кислоты (концентрация 63,6%). Продолжительность нитрования составила 60 мин. После завершения нитрования объем реакционной смеси доводили до 100 мл дистиллированной водой. Для конденсации магнитоактивного соединения к 10 мл раствора нитрованных ЛСТ добавляли 2 мл раствора сульфата железа (II) (концентрация 5,56 мг Fe (II)/мл) и 2 мл 2 М раствора гидроксида натрия. В этих условиях происходит первоначальное выделение крупнодисперсных частиц, которые постепенно осаждаются. На дне реактора образуется плотный окрашенный осадок, который с течением времени пептизируется. При этом образуется магнитная жидкость (МЖ), магнитную активность которой измеряли на весах Гуи через 15 мин проведения конденсации. Величина магнитной активности (МА) составила 61,4 мг.

Пример 2. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 79,6 мг.

Пример 3. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 85,4 мг.

Пример 4. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 87,9 мг.

Пример 5. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход концентрированной азотной кислоты составил 0,8 мл. Продукт реакции представляет собой компактный твердый осадок (КО). Величина магнитной активности (МА) составила 47,5 мг.

Пример 6. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 84,3 мг.

Пример 7. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 102,9 мг.

Пример 8. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 114,3 мг.

Пример 9. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Расход концентрированной азотной кислоты составил 1,2 мл. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 29,2 мг.

Пример 10. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 9. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 57,0 мг.

Пример 11. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 9. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 74,1 мг.

Пример 12. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 9. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 78,8 мг.

Пример 13. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход раствора сульфата железа (II) составил 1,75 мл. Величина магнитной активности (МА) составила 38,1 мг.

Пример 14. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 48,0 мг.

Пример 15. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 51,9 мг.

Пример 16. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 52,1 мг.

Пример 17. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Расход раствора сульфата железа (II) составил 2,25 мл. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 43,8 мг.

Пример 18. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 17. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 75,0 мг.

Пример 19. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 17. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 97,3 мг.

Пример 20. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 17. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 113,4 мг.

Пример 21. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход 2 М раствора гидроксида натрия составил 2,5 мл. Величина магнитной активности (МА) составила 71,0 мг.

Пример 22. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 21. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 97,2 мг.

Пример 23. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 21. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 104,1 мг.

Пример 24. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 21. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 109,0 мг.

Пример 25. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность нитрования составила 15 мин. Величина магнитной активности (МА) составила 62,3 мг.

Пример 26. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 25. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 88,6 мг.

Пример 27. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 25. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 95,9 мг.

Пример 28. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 25. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 109,8 мг.

Пример 29. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Вместо 2 мл 2 М раствора гидроксида натрия использовали 2 мл концентрированного водного раствора аммиака. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 32,9 мг.

Пример 30. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 29. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 57,8 мг.

Пример 31. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 29. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 79,6 мг.

Пример 32. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 29. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 100,7 мг.

Пример 33. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Температура, при которой проводили конденсацию, равна 45°С. Величина магнитной активности (МА) составила 112,4 мг.

Пример 34. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 33. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 122,6 мг.

Пример 35. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 33. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 127,6 мг.

Пример 36. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 33. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 129,9 мг.

Пример 37. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Конденсацию проводили в течение 5 мин на неодимовом магните (сила сцепления 200 кг). Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 67,4 мг.

Пример 38. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 15 мин. Величина магнитной активности (МА) составила 120,4 мг.

Пример 39. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 145,7 мг.

Пример 40. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 157,4 мг.

Пример 41. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 166,4 мг.

Пример 42. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Для конденсации магнитоактивного соединения брали 8 мл раствора нитрованных ЛСТ. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 56,7 мг.

Пример 43. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 98,1 мг.

Пример 44. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 136,3 мг.

Пример 45. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 163,2 мг.

Пример 46. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Для конденсации магнитоактивного соединения брали 12 мл раствора нитрованных ЛСТ. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 54,4 мг.

Пример 47. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 46. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 82,7 мг.

Пример 48. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 46. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 91,4 мг.

Пример 49. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 46. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 94,4 мг.

Пример 50. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Конденсацию магнитоактивного соединения проводили на кипящей водяной бане в течение 1 мин. Продукт реакции представляет собой магнитную жидкость. Измерение магнитной активности проводили через 5 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Величина магнитной активности (МА) составила 113,8 мг.

Пример 51. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 15 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 82,7 мг.

Пример 52. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 30 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 131,3 мг.

Пример 53. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 45 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 94,4 мг.

Пример 54. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 60 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 134,6 мг.

Пример 55. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход концентрированной азотной кислоты составил 0,6 мл. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 35,5 мг.

Пример 56. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 55. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 63,7 мг.

Пример 57. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 55. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 74,7 мг.

Пример 58. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 55. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 78,1 мг.

Пример 59. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход 2 М раствора гидроксида натрия составил 1,5 мл. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 40,6 мг.

Пример 60. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 59. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 75,0 мг.

Пример 61. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 59. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 102,3 мг.

Пример 62. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 59. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 118,8 мг.

Пример 63. Конденсацию МА проводили в условиях примера 1. Для этого 4 мл раствора ЛСТ (концентрация 18,6 мг/мл) разбавляли до 100 мл дистиллированной водой. Для конденсации магнитоактивного соединения использовали 10 мл разбавленного раствора ЛСТ. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 8,2 мг.

Пример 64. Конденсацию МА проводили в условиях примера 63. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 12,8 мг.

Пример 65. Конденсацию МА проводили в условиях примера 63. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 16,6 мг.

Пример 66. Конденсацию МА проводили в условиях примера 63. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 19,1 мг.

Полученные результаты сведены в таблице. Из приведенных примеров видно, что нитрованные ЛСТ являются эффективным пептизатором при синтезе магнитной жидкости и позволяют более полно использовать растительную биомассу.

Похожие патенты RU2608417C1

название год авторы номер документа
Способ получения магнитоактивного соединения 2016
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Плахин Вадим Александрович
  • Кузяков Николай Юрьевич
RU2634026C1
СПОСОБ НИТРОВАНИЯ ГУМИНОВЫХ КИСЛОТ 2021
  • Хабаров Юрий Германович
  • Вешняков Вячеслав Александрович
  • Зубов Иван Николаевич
  • Селянина Светлана Борисовна
  • Орлов Александр Сергеевич
RU2791903C1
ОРГАНИЧЕСКИЙ КОМПОНЕНТ ПИТАТЕЛЬНОЙ СМЕСИ ДЛЯ РАСТЕНИЙ 2016
  • Хабаров Юрий Германович
  • Рыжков Николай Николаевич
RU2660929C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2012
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2489359C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
RU2453500C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2014
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Рекун Александр Александрович
  • Патракеев Александр Андреевич
  • Сырков Дмитрий Сергеевич
RU2572418C1
Способ модификации сульфатного лигнина 2020
  • Гаркотин Антон Юрьевич
  • Хабаров Юрий Германович
  • Вешняков Вячеслав Александрович
RU2753533C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
RU2476382C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМЫХ ПРОИЗВОДНЫХ МАГНОЛОЛА И ПРОИЗВОДНЫХ ХОНОКИОЛА И ИХ ИНТЕРМЕДИАТОВ, И РОДСТВЕННЫХ МОНОГИДРОКСИ-ЗАЩИЩЕННЫХ ИНТЕРМЕДИАТОВ 2021
  • Чжан, Пинпин
  • Лю, Е
  • Юй, Гокунь
  • Чжао, Цянфэн
RU2814636C1
СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТА МЕДИ 2013
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2567652C2

Реферат патента 2017 года ПЕПТИЗАТОР ДЛЯ СИНТЕЗА МАГНИТОАКТИВНОЙ ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕ

Изобретение может быть использовано в химической промышленности. Лигносульфонаты, подвергнутые нитрованию концентрированной азотной кислотой, применяют в качестве пептизатора для синтеза магнитоактивной жидкости на водной основе. Изобретение позволяет расширить круг веществ, которые могут быть использованы в качестве пептизатора, и повысить полноту использования растительной биомассы. 1 табл., 66 пр.

Формула изобретения RU 2 608 417 C1

Применение лигносульфонатов, подвергнутых нитрованию концентрированной азотной кислотой, в качестве пептизатора для синтеза магнитоактивной жидкости на водной основе.

Документы, цитированные в отчете о поиске Патент 2017 года RU2608417C1

US 9016373 B2, 28.04.2015
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2012
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2489359C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
RU2453500C1
US 4019995 A1, 26.04.1977
US 5958282 A1, 28.09.1999
WO 2000068332 A1, 16.11.2000.

RU 2 608 417 C1

Авторы

Хабаров Юрий Германович

Кузяков Николай Юрьевич

Вешняков Вячеслав Александрович

Бабкин Игорь Михайлович

Даты

2017-01-18Публикация

2015-11-25Подача