СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ Российский патент 2013 года по МПК C01G49/08 H01F1/28 

Описание патента на изобретение RU2489359C1

Изобретение относится к способам получения магнитоактивных соединений. Наноразмерные частицы магнитоактивных соединений являются основой магнитных жидкостей, обладающих уникальным сочетанием текучести и способностью взаимодействовать с магнитным полем. Их свойства определяются совокупностью характеристик твердой магнитной фазы, дисперсионной среды и стабилизатора.

Механическое диспергирование частиц магнетита в шаровых мельницах в течение 1000 ч явилось первым способом получения магнитных жидкостей. [Papell S.S. Low viskosity magnetic fluid obtaned by the colloidal suspension of magnetic particles. Patent USA №3215572, USA C1. 149-2. 1965] путем мокрого механического измельчения.

Способ получения магнитоактивного соединения из природного минерала - сидерита [Общая и неорганическая химия. М.Х. Карапетьянц. С.И. Дракин - с.571], также отличается низкой производительностью и, кроме того, он проводится при высокой температуре.

Кроме низкой производительности недостатками диспергирования в шаровой мельнице является загрязнение магнитной жидкости продуктами истирания шаров при работе мельницы и значительный разброс размеров частиц.

Кайзер усовершенствовал описанный Пейпелом процесс и получил магнитные жидкости, в которых дисперсной средой были вода, ароматические углеводороды и эфиры [Kaiser R., Miskolczy G. // J.Appl. Phys., 1970, V. 41, N3, P.1064-1072. Kaiser R. Ferrofluid composition. Patent USA №3700595, Int. C1. H01F 1/10, 1972].

Магнитоактивные частицы коллоидных размеров можно формировать за счет конденсации отдельных молекул. На размер образующихся частиц существенно влияют условия конденсации, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Химическая реакция (1) служит основой многих методов конденсации магнитоактивных соединений:

.

Например, для получения магнетита 10%-ные растворы FeCl2·4H2O и FeCl3·6H2O, взятые в таких объемах, чтобы соотношение солей F e 3 + / F e 2 + F было 2 к 1, смешивают при 70°C и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения размера частиц конденсацию проводят при интенсивном перемешивании [Elmore W.С. // Phys. Rew., 1938, V. 54, P.309].

Замена при конденсации магнетита гидроксида натрия на гидроксид аммония позволяет проводить соосаждение солей при 25…40°C. (пат. СССР №568598, 861321, 966015, 978860).

Для стабилизации в водной среде частиц магнетита со средним размером около 10 нм, полученных химической конденсацией, Нилом предложено использовать - лигносульфонат натрия. Недостатками метода являются необходимость применения двух солей железа и продолжительная выдержка при повышенных температурах. Продукт, полученный при низких температурах, не обладает магнитной активностью. [Neal J.A. Clarification process. Patent USA 4088779 C02B 1/20, 1978.; Neal J.A. Clarification process. Patent USA 4110208 C02B 1/20, 1978].

Кроме того, известен способ, в соответствии с которым из раствора соли железа (II) осаждают карбонат железа (II), который в дальнейшем в течение 1 ч подвергают окислительной обработке при температуре 55…60°С. В результате карбонат железа(II) превращается в магнитоактивный магнетит. Продукт реакции промывают декантацией до рН 7 [пат. РФ №2230705. МПК7 C01G 49/08. Способ получения магнитоактивного соединения // Беликов В.Г., Курегян А.Г., Шахшаев Ш.О., Зилфикаров И.Н. Заявка: 2000109795/02, 19.04.2000. Опубликовано: 20.06.2004].

Наиболее близким к предлагаемому способу является получение чистого черного пигмента оксида железа (патент CN 102139927 High-purity iron oxide black pigment and production method thereof) из сульфата железа (II) в щелочной среде. Способ осуществляется следующим образом. Водный раствор FeSO4 первоначально подщелачивают раствором гидроксида натрия при нормальной температуре и выдерживают в течение 0,5…2 ч, контролируя рН 10…10,5. Далее проводят окисление кислородом воздуха при температуре 90…97°C в течение 1 ч. После завершения окисления из пигмента удаляют примеси тяжелых металлов, промывают на фильтр-прессе и сушат.

Недостатком указанного способа является большая продолжительность синтеза магнитоактивного соединения.

Целью является ускорение синтеза магнитоактивного соединения. Это достигается тем, что конденсацию магнитоактивного соединения из раствора солей железа производят в условиях воздействия магнитного поля.

Способ реализуется следующим образом. К раствору соли железа (II) добавляется расчетное, количество нитрозированных лигносульфоновых кислот, полученный раствор подщелачивается и выдерживается в условиях действия внешнего магнитного поля. Выделяющийся бирюзовый осадок быстро уплотняется и через некоторое время превращается в магнитоактивное соединение с высокой относительной магнитной восприимчивостью.

Пример 1. Для осаждения магнитоактивного соединения смешивали 10 мл раствора нитрозированных лигносульфонатов, концентрацией 0,74 мг/мл, 0,8 мл раствора сульфата железа (II), концентрацией 27,8 мг/мл и 2 мл раствора NaOH, концентрацией 40 г/л.

Нитрозирование лигносульфонатов проводили следующим образом. В мерную колбу вместимостью 200 мл вносили 8 мл раствора исходных лигносульфонатов, концентрацией 1,86 г/л, 7,5 мл раствора нитрита натрия, концентрацией 2,5 г/л (расход нитрита натрия по отношению к лигносульфонатам составил 12,6%) и 1 мл раствора азотной кислоты концентрацией 10%, объем раствора доводили до метки дистиллированной водой. Реакцию нитрозирования проводили в течение 60 мин.

Пробирку с реакционной смесью выдерживали на постоянном магните в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 90,7%, ОМВ 14,8 г/гFe.

Пример 2. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 92,9%, ОМВ 17,6 г/гFe.

Пример 3. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 22,1 г/гFe.

Пример 4. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 24,1 г/гFe.

Пример 5. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что пробирку с реакционной смесью выдерживали на постоянном магните в течение 120 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 26,6 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 6. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 180 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 27,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 7. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 1200 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 37,3 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 8. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что конденсацию МС проводили без воздействия магнитного поля в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 77,9%, ОМВ 7,6 г/гFe.

Пример 9. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 30. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 84,2%, ОМВ 11,3 г/гFe.

Пример 10. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 60. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 87,1%, ОМВ 18,3 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 11. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 90. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 21,4 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 12. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 120. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 23,8 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 13. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 180. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 26,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 14. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 1200. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 26,1%, ОМВ 30,8 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 15. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что реакцию нитрозирования лигносульфонатов проводили в течение 180 мин.

Пробирку с реакционной смесью выдерживали на постоянном магните в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 90,0%, ОМВ 13,2 г/гFe.

Пример 16. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 92,9%, ОМВ 17,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 17. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 20,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 18. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 22,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 19. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что конденсацию МС проводили без воздействия магнитного поля в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 61,4%, ОМВ 4,1 г/гFe.

Пример 20. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 77,1%, ОМВ 5,9 г/гFe.

Пример 21. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 82,9%, ОМВ 8,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 22. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Из мерили объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 85,7%, ОМВ 11,2 г/гFe. Осадок приобрел свойства магнитной жидкости.

Результаты, полученные при синтезе магнитоактивного соединения, сведены в таблице, из данных которой видно, что предлагаемое решение позволяет значительно ускорить синтез магнитоактивного соединения.

Пример Условия конденсации τ, мин Показатели объем осадка, % от общего объема ОМВ, г/гFe внешний вид 1 под действием внешнего магнитного поля 15 90,7 14,8 осадок 2 под действием внешнего магнитного поля 30 92,9 17,6 осадок 3 под действием внешнего магнитного поля 60 94,3 22,1 осадок 4 под действием внешнего магнитного поля 90 94,3 24,3 осадок 5 под действием внешнего магнитного поля 120 94,3 26,6 жидкость 6 под действием внешнего магнитного поля 180 94,3 27,1 жидкость 7 под действием внешнего магнитного поля 1200 94,3 37,3 жидкость 8 естественные 15 77,9 7,6 осадок 9 естественные 30 84,3 11,2 осадок 10 естественные 60 87,1 18,3 жидкость 11 естественные 90 88,6 21,4 жидкость 12 естественные 120 88,6 23,8 жидкость 13 естественные 180 88,6 26,1 жидкость 14 естественные 1200 88,6 30,8 жидкость 15 под действием внешнего магнитного поля 15 90,0 13,2 осадок 16 под действием внешнего магнитного поля 30 92,9 17,1 жидкость 17 под действием внешнего магнитного поля 60 94,3 20,9 жидкость 18 под действием 90 94,3 22,9 жидкость внешнего магнитного поля 19 естественные 15 61,4 4,1 осадок 20 естественные 30 77,1 5,9 осадок 21 естественные 60 82,9 8,9 жидкость 22 естественные 90 85,7 11,2 жидкость

Похожие патенты RU2489359C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
RU2476382C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
RU2453500C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2014
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Рекун Александр Александрович
  • Патракеев Александр Андреевич
  • Сырков Дмитрий Сергеевич
RU2572418C1
СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТА МЕДИ 2013
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2567652C2
ПЕПТИЗАТОР ДЛЯ СИНТЕЗА МАГНИТОАКТИВНОЙ ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕ 2015
  • Хабаров Юрий Германович
  • Кузяков Николай Юрьевич
  • Вешняков Вячеслав Александрович
  • Бабкин Игорь Михайлович
RU2608417C1
Способ получения магнитоактивного соединения 2016
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Плахин Вадим Александрович
  • Кузяков Николай Юрьевич
RU2634026C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2015
  • Хабаров Юрий Германович
  • Кузяков Николай Юрьевич
  • Вешняков Вячеслав Александрович
RU2576436C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАГНИТНОГО МАТЕРИАЛА НА ОСНОВЕ ОКСИДОВ КРЕМНИЯ И ЖЕЛЕЗА 2014
  • Панасенко Александр Евгеньевич
  • Земнухова Людмила Алексеевна
  • Ткаченко Иван Анатольевич
RU2575458C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕГО ЛЕКАРСТВЕННОГО СРЕДСТВА 1994
  • Селиванов Е.А.
  • Андрианова И.Г.
  • Сидорова Н.Д.
  • Сивакова Н.П.
  • Щеглова Н.А.
RU2078563C1
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСА БИОЛОГИЧЕСКИ АКТИВНЫХ ПЕПТИДОВ, ВОССТАНАВЛИВАЮЩИХ ФУНКЦИЮ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ 2017
  • Канаев Павел Андреевич
  • Маркина Инна Валерьевна
  • Сурнин Сергей Александрович
  • Фонарёв Михаил Юрьевич
RU2669693C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ

Изобретение может быть использовано в неорганической химии. Для получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II) конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля. Изобретение позволяет ускорить синтез и получить магнитоактивное соединение с высокой относительной магнитной восприимчивостью. 1 табл., 22 пр.

Формула изобретения RU 2 489 359 C1

Способ получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II), отличающийся тем, что конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля.

Документы, цитированные в отчете о поиске Патент 2013 года RU2489359C1

CN 102139927 А, 03.08.2011
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2000
  • Беликов В.Г.
  • Курегян А.Г.
  • Шахшаев Ш.О.
  • Зилфикаров И.Н.
RU2230705C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2008
  • Грабовский Юрий Павлович
  • Лисин Антон Валентинович
RU2384909C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ 2007
  • Грабовский Юрий Павлович
  • Евтушенко Михаил Борисович
  • Лисин Антон Валентинович
RU2332356C1
EP 860476 A2, 26.08.1998.

RU 2 489 359 C1

Авторы

Хабаров Юрий Германович

Бабкин Игорь Михайлович

Кузяков Николай Юрьевич

Даты

2013-08-10Публикация

2012-04-10Подача