Способ получения магнитоактивного соединения Российский патент 2017 года по МПК C01G49/00 H01F1/44 

Описание патента на изобретение RU2634026C1

Изобретение касается способов синтеза магнитоактивных соединений. Наноразмерные благородные металлы - серебро, золото, палладий - обладают уникальными свойствами и возможностями использования в катализе, микроэлектронике, хранении данных, доставке лекарственных средств, при создании биодатчиков. Наиболее популярным способом получения металлических наночастиц является восстановление металлов из соответствующих солей в водных растворах или растворах органических растворителей в присутствии блокирующих агрегирование стабилизаторов. В качестве восстановителей обычно используют водород, литийалюминийгидриды и боргидриды металлов, спирты и амины. Наноразмерные катализаторы трудно отделить от реакционной среды, так как фильтрование и центрифугирование не подходят для этих целей. Решение этой проблемы заключается в использовании магнитоактивных катализаторов, которые могут быть легко извлечены из реакционной среды с помощью магнитного поля. Синтез материалов состава Ag-Fe3O4 обычно многостадиен и продолжителен во времени.

Известен способ получения наночастиц магнитоактивного соединения состава Ag/Fe3O4 путем смешения олеиновой кислоты, олеиламина в 1,2-гексадекандиоле, нагревания раствора до 120°С в атмосфере азота. При перемешивании добавляют раствор пентакарбонила железа Fe(CO)5. Через 5 мин добавляют деаэрированный раствор нитрата серебра и олеиламина в толуоле. Раствор нагревают до 205°С до кипения за 90 мин. Реакционную смесь охлаждают до комнатной температуры. После добавления изопропилового спирта осадок центрифугируют [Нао D., Cheng-Min S., Chao Н., Zhi-Chuan X., Chen L., Yuan Т., Xue-Zhao S., Hong-Jun G. Synthesis and properties of Au-Fe3O4 and Ag-Fe3O4 heterodimeric nanoparticles // Chin. Phys. B. - 2010. - Vol. 19, N 6. - P. 066102]. Недостатком этого способа является многостадийность.

Известен способ получения Fe3O4/Ag композита путем добавления к раствору сульфата железа(II) FeSO4 при перемешивании раствора аммиака, последующего нагревания до 70-80°С за 6 мин с помощью микроволнового излучения. После охлаждения с помощью магнитного поля отделяют частицы магнетита. Продукт затем трижды промывают водой и сушат в вакууме. Затем магнетит добавляют к раствору нитрата серебра, полученную смесь нагревают до кипения, добавляют раствор винной кислоты и кипятят 5 мин. Затем наночастицы отделяют с помощью внешнего магнитного поля [Liu С.Н., Zhou Z.D., Yu X., Lv B.Q., Mao J.F., Xiao D. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles // Inorganic Materials. - 2008. - Vol .44, N 3. - P. 291-295]. Недостатком является многостадийность способа.

Известен способ получения магнитного нанокомпозита, согласно которому к 1 л раствора 0,05 моль сульфата железа(II) FeSO4 и 0,1 моль гексагидрата хлорида железа(III) FeCl3⋅6H2O при интенсивном перемешивании добавляют 25% водный раствор аммиака до рН 10-12. Для нанесения серебряного покрытия через 10-15 мин реакционную смесь нагревают до 40°С, последовательно добавляют 0,1% раствор нитрата серебра AgNO3 и 10% раствор глюкозы и постепенно повышают температуру до 60-70°С, при которой смесь выдерживают 40 мин. Раствор выдерживают в постоянном магнитном поле 24 ч. Осадок промывают водой до рН 9-10, фильтруют и высушивают при комнатной температуре. [Пат. 95222 . МПК (2014.01) C01G 5/00, C01G 49/00. Cпociб одержання магнiтного нанокомпозиту Ag@Fe3O4 з острiвковим покриттям / Чан Т.М., Левiтiн ., Криськiв О.С. // Бюл. - 2014. - №23. - 5 с]. Недостатками являются многостадийность и большая продолжительность способа.

Известен способ получения композита, состоящего из магнетита и серебра, согласно которому 1,6 г гексагидрата хлорида железа(III) FeCl3⋅6H2O и 0,34 г нитрата серебра AgNO3 добавляют к 60 мл этиленгликоля при комнатной температуре, затем при энергичном перемешивании добавляют 3,2 г ацетата натрия и 14 мл этилендиамина для получения прозрачного раствора. После перемешивания в течение приблизительно 30 мин, раствор переносят в автоклав и выдерживают при 200°С в течение 6 ч с последующим охлаждением до температуры окружающей среды естественным образом. Черный осадок центрифугируют, промывают этанолом несколько раз и сушат при 60°С в вакууме [Ai L., Zeng С, Wang Q. One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine В // Catalysis Communications. - 2011. - Vol. 14, N 1. - P. 68-73]. Недостатками являются необходимость проведения реакции при повышенных температурах в автоклаве, большая продолжительность и многостадийность.

Наиболее близким является способ получения магнитоактивного соединения, в соответствии с которым магнитоактивное соединение получают путем окисления соли железа(II) раствором нитрата серебра в водно-аммиачном растворе. При смешении растворов сразу же выделяется черный осадок магнитоактивного соединения (прототип). [Патент 2572418 РФ. МПК C01G 49/08 (2006.01), H01F 1/00 (2006.01). Опубл. 10.01.2016. Бюл. №1]. Недостатком данного способа является невозможность получать магнитоактивное соединение в виде раствора.

Задачей изобретения является синтез раствора магнитоактивного соединения.

Это достигается путем проведения конденсации из растворов сульфата железа(II) и окислителя при их смешении, причем в качестве окислителя использован водно-аммиачный раствор нитрата серебра с добавкой тетраэтиламмоний гидроксида (ТЭАГ), а раствор сульфата железа(II) содержит лигносульфонаты (ЛСТ).

Предлагаемый способ осуществляется следующим образом. К раствору сульфата железа(II) и лигносульфонатов добавляют расчетный объем аммиачного раствора нитрата серебра с добавкой тетраэтиламмоний гидроксида. Сразу же образуется продукт, обладающий магнитной активностью.

Пример 1. Раствор сульфата железа(II) готовят следующим образом. К 10 мл раствора лигносульфонатов концентрацией 740 мг/л добавляют 2 мл раствора сульфата железа(II) (концентрацией 0,1 М). Соотношение лигносульфонатов и железа составляет 0,7 г ЛСТ/г Fe. Раствор окислителя готовят, смешивая 0,3 мл 0,2 М раствора нитрата серебра AgNO3, 1 мл концентрированного раствора аммиака NH4OH и 1 мл раствора тетраэтиламмоний гидроксида, концентрацией 35%. Соотношение окислителя и тетраэтиламмоний гидроксида к железу составляет 0,58 и 31,5 г/г Fe соответственно.

К раствору сульфата железа(II) при перемешивании добавляют раствор окислителя. При смешении образуется окрашенный в черный цвет раствор, обладающий магнитной активностью. Относительная магнитная восприимчивость (ОМВ), измеренная с помощью весов Гуи, через 6 мин после смешения составила 7,2 г/г Fe.

Пример 2. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 30 мин после смешения. Величина относительной магнитной восприимчивости составила 12,0 г/г Fe.

Пример 3. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 55 мин после смешения. Величина относительной магнитной восприимчивости составила 15,5 г/г Fe.

Пример 4. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 180 мин после смешения. Величина относительной магнитной восприимчивости составила 20,1 г/г Fe.

Пример 5. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что объем раствора лигносульфонатов составил 2,5 мл, а концентрация 2980 мг/л. Измерение относительной магнитной восприимчивости проводили через 9 мин после смешения. Величина относительной магнитной восприимчивости составила 8,9 г/г Fe.

Пример 6. Способ получения магнитоактивного соединения по примеру 5, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 60 мин после смешения. Величина относительной магнитной восприимчивости составила 13,0 г/г Fe.

Пример 7. Способ получения магнитоактивного соединения по примеру 5, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 180 мин после смешения. Величина относительной магнитной восприимчивости составила 16,2 г/г Fe.

Пример 8. Способ получения магнитоактивного соединения по примеру 5, отличающийся тем, что объем раствора лигносульфонатов составил 1,25 мл, а концентрация 5950 мг/л. Измерение относительной магнитной восприимчивости проводили через 120 мин после смешения. Величина относительной магнитной восприимчивости составила 12,3 г/г Fe.

Пример 9. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что синтез проведен без использования тетраэтиламмоний гидроксида. Продукт реакции представляет собой компактный осадок магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 45 мин после смешения. Величина относительной магнитной восприимчивости составила 23,3 г/г Fe.

Пример 10. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что расход тетраэтиламмоний гидроксида составил 0,1 мл. Соотношение тетраэтиламмоний гидроксида к железу составляет 3,15 г/г железа. Продукт реакции представляет собой компактный осадок магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 10 мин после смешения. Величина относительной магнитной восприимчивости составила 7,3 г/г Fe.

Пример 11. Способ получения магнитоактивного соединения в условиях примера 10, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 30 мин после смешения. Величина относительной магнитной восприимчивости составила 17,4 г/г Fe. Продукт реакции представляет собой компактный осадок магнитоактивного соединения.

Пример 12. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что расход тетраэтиламмоний гидроксида составил 0,2 мл. Соотношение тетраэтиламмоний гидроксида к железу составляет 6,3 г/г железа. Продукт реакции представляет собой компактный осадок магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 2 мин после смешения. Величина относительной магнитной восприимчивости составила 1,0 г/г Fe.

Пример 13. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что расход тетраэтиламмоний гидроксида составил 0,4 мл. Соотношение тетраэтиламмоний гидроксида к железу составляет 12,6 г/г железа. Продукт реакции представляет собой раствор магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 2 мин после смешения. Величина относительной магнитной восприимчивости составила 2,3 г/г Fe.

Пример 14. Способ получения магнитоактивного соединения в условиях примера 13, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 30 мин после смешения. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости составила 7,6 г/г Fe.

Пример 15. Способ получения магнитоактивного соединения в условиях примера 13, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 65 мин после смешения. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости составила 8,3 г/г Fe.

Пример 16. Способ получения магнитоактивного соединения в условиях примера 15, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 200 мин после смешения. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости составила 9,4 г/г Fe.

Пример 17. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что конденсация проведена без использования нитрата серебра. Продукт реакции представляет собой компактный осадок. Измерение относительной магнитной восприимчивости проводили через 72 мин после смешения. Величина относительной магнитной восприимчивости составила 0,2 г/г Fe.

Пример 18. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что раствор окислителя готовят, смешивая 0,2 мл 0,2 М раствора нитрата серебра AgNO3, 1 мл концентрированного раствора аммиака NH4OH и 0,4 мл раствора тетраэтиламмоний гидроксида, концентрацией 35%. Соотношение окислителя и тетраэтиламмоний гидроксида к железу составляет 0,39 и 12,6 г/г железа соответственно. Продукт реакции представляет собой раствор магнитоактивного соединения. Измерение относительной магнитной восприимчивости проводили через 20 мин после смешения. Величина относительной магнитной восприимчивости составила 6,1 г/г Fe.

Пример 19. Способ получения магнитоактивного соединения по примеру 18, отличающийся тем, что измерение относительной магнитной восприимчивости проводили через 72 мин после смешения. Величина относительной магнитной восприимчивости составила 9,2 г/г Fe.

Пример 20. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что к 8 мл раствора лигносульфонатов концентрацией 740 мг/л добавляют 2 мл раствора сульфата железа(II) (концентрацией 0,1 М). Соотношение лигносульфонатов и железа составляет 0,6 г ЛСТ/г Fe. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости, измеренная через 30 мин после смешения, составила 8,3 г/г Fe.

Пример 21. Способ получения магнитоактивного соединения по примеру 1, отличающийся тем, что к 10 мл раствора лигносульфонатов концентрацией 740 мг/л добавляют 1,6 мл раствора сульфата железа(II) (концентрацией 0,1 М). Соотношение лигносульфонатов и железа составляет 0,75 г ЛСТ/г Fe. Продукт реакции представляет собой раствор магнитоактивного соединения. Величина относительной магнитной восприимчивости, измеренная через 45 мин после смешения, составила 6,3 г/г Fe.

Таким образом, для получения устойчивого раствора магнитоактивного соединения, раствор железа(II) должен содержать лигносульфонаты в количестве 0,56-0,7 г/г Fe, расход нитрата серебра должен быть в интервале 0,12-0,58 г Ag/г Fe, а добавка тетраэтиламмоний гидроксида должна быть не менее 12,6 г/г Fe.

Полученные результаты, сведенные в таблице, свидетельствуют о том, что использование тетраэтиламмоний гидроксида позволяет упростить синтез магнитоактивного соединения и получать его в виде раствора. Кроме того, отмечено, что раствор магнитоактивного соединения устойчив в течение длительного времени.

Похожие патенты RU2634026C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2014
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Рекун Александр Александрович
  • Патракеев Александр Андреевич
  • Сырков Дмитрий Сергеевич
RU2572418C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2015
  • Хабаров Юрий Германович
  • Кузяков Николай Юрьевич
  • Вешняков Вячеслав Александрович
RU2576436C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
RU2453500C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
RU2476382C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2012
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Кузяков Николай Юрьевич
RU2489359C1
ПЕПТИЗАТОР ДЛЯ СИНТЕЗА МАГНИТОАКТИВНОЙ ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕ 2015
  • Хабаров Юрий Германович
  • Кузяков Николай Юрьевич
  • Вешняков Вячеслав Александрович
  • Бабкин Игорь Михайлович
RU2608417C1
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОГО ИОНООБМЕННИКА 1994
  • Никашина В.А.
  • Серова И.Б.
  • Руденко Б.А.
RU2081846C1
Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и способ его получения 2016
  • Озкан Света Жираслановна
  • Карпачева Галина Петровна
RU2635254C2
Способ получения микросфер оксида железа FeO 2021
  • Захарова Галина Степановна
RU2762433C1
Нанокомпозитный электромагнитный материал и способ его получения 2021
  • Озкан Света Жираслановна
  • Костев Александр Иванович
  • Карпачева Галина Петровна
RU2768155C1

Иллюстрации к изобретению RU 2 634 026 C1

Реферат патента 2017 года Способ получения магнитоактивного соединения

Изобретение может быть использовано при создании магнитоактивных катализаторов. Способ получения раствора магнитоактивного соединения включает конденсацию из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении. В качестве окислителя используют водно-аммиачный раствор нитрата серебра с добавкой тетраэтиламмоний гидроксида. Изобретение позволяет упростить синтез магнитоактивного соединения и получать его в виде устойчивого водного раствора. 3 з.п. ф-лы, 1 табл., 21 пр.

Формула изобретения RU 2 634 026 C1

1. Способ получения раствора магнитоактивного соединения путем конденсации из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении, отличающийся тем, что в качестве окислителя используют водно-аммиачный раствор нитрата серебра с добавкой тетраэтиламмоний гидроксида.

2. Способ по п. 1, отличающийся тем, что раствор сульфата железа (II) содержит лигносульфонаты в количестве 0,56-0,7 г/г Fe.

3. Способ по п. 1, отличающийся тем, что расход нитрата серебра составляет 0,12-0,58 г Ag/г Fe.

4. Способ по п. 1, отличающийся тем, что добавка тетраэтиламмоний гидроксида составляет не менее 12,6 г/г Fe.

Документы, цитированные в отчете о поиске Патент 2017 года RU2634026C1

US 4329241 A1, 11.05.1982
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2014
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
  • Рекун Александр Александрович
  • Патракеев Александр Андреевич
  • Сырков Дмитрий Сергеевич
RU2572418C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ 2011
  • Хабаров Юрий Германович
  • Бабкин Игорь Михайлович
  • Вешняков Вячеслав Александрович
RU2453500C1
Способ получения феррожидкости 1975
  • Бибик Ефим Ефимович
  • Лавров Иван Степанович
  • Грибанов Николай Михайлович
  • Котомина Татьяна Михайловна
  • Варенцова Татьяна Адольфовна
SU568598A1
WO 2011110711 A1, 15.09.2011.

RU 2 634 026 C1

Авторы

Хабаров Юрий Германович

Бабкин Игорь Михайлович

Вешняков Вячеслав Александрович

Плахин Вадим Александрович

Кузяков Николай Юрьевич

Даты

2017-10-23Публикация

2016-07-25Подача