КАТАЛИЗАТОР ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА Российский патент 2016 года по МПК B01J29/76 B01J23/882 C10G45/08 

Описание патента на изобретение RU2575637C1

Изобретение относится к области катализа, а именно к катализаторам селективной гидроочистки бензинов каталитического крекинга (БКК).

Получение моторных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время Россия переходит к производству дизельных топлив и бензинов, соответствующих экологическому классу 5 в соответствии с техническим регламентом Таможенного союза "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту" (18.10.2011) и содержащих не более 10 ppm серы. БКК является одним из основных компонентов товарных бензинов. Доля БКК в бензиновом фонде НПЗ составляет 30-40%, при этом вместе с БКК в компаундированные бензины поступает до 95% количества серы [Sylvette Brunet, Damien Mey, Guy Perot, Christophe Bouchy, Fabrice Diehl. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General. - 2005. - 278. P. 143-172]. Для получения бензинов, соответствующих современным требованиям, необходимо снизить содержание серы в БКК, что, как правило, достигается с использованием процессов гидроочистки.

БКК характеризуется высоким содержанием ароматических и олефиновых углеводородов и обладает относительно высоким октановым числом. Гидрирование олефиновых углеводородов, содержащихся в БКК, при проведении гидроочистки приводит к снижению октанового числа. Таким образом, желательно проводить гидроочистку БКК до требуемого содержания серы при минимальной степени гидрирования олефиновых углеводородов. В связи с этим актуальной задачей является создание новых катализаторов, позволяющих проводить гидроочистку БКК до требуемого содержания серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Известны различные варианты катализаторов для селективной гидроочистки БКК. Как правило, такие катализаторы содержат оксиды кобальта и молибдена, нанесенные на пористый носитель, при этом наиболее часто используются носители на основе оксида алюминия.

Известен катализатор гидроочистки тяжелой фракции бензина каталитического крекинга, содержащий 8-19 мас. % MoO3 и 2-6 мас. % CoO и/или NiO, остальное - Al2O3, получаемый пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°C и конечной прокалкой при 400-650°C [Пат. RU №2242501, C10G 45/08, 05.09.2003]. В сочетании с процессом, основанным на разделении БКК на две фракции с интервалами кипения «н.к. - 130-160°C» и «130-160°C - к.к.» с последующей гидроочисткой тяжелой фракции в присутствии указанного катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией, из широкой фракции БКК обеспечивается получение продукта - компонента товарного бензина - с содержанием серы менее 0,05 мас. % при потере октанового числа менее 0,5 пункта. Недостатком такого катализатора и способа гидроочистки БКК является высокое содержание серы в продукте.

Для повышения селективности катализаторов гидроочистки БКК в их состав могут входить носители, содержащие совместно оксид алюминия и модифицирующие компоненты, такие как оксиды магния, железа, хрома, кобальта, никеля, меди, цинка, иттрия, скандия и других элементов, а также цеолиты.

В заявке US 2005023192 (A1) [C10G 45/04, 03.02.2005] описан катализатор гидроочистки БКК, содержащий носитель на основе оксида алюминия, модифицированный оксидом по крайней мере одного металла, выбранного из ряда: железо, хром, кобальт, никель, медь, цинк, иттрий, скандий, металлы группы лантаноидов, а также по крайней мере один металл групп VIA и VIII Периодической таблицы, нанесенный на носитель.

В патенте EP №101333, B01J 29/70, C10G 45/64, 28.06.2000 описан катализатор, содержащий цеолит ERS-10, металл VIII Периодической таблицы, металл группы VI и один или более оксидов в качестве носителя.

В качестве основного компонента носителя также может использоваться оксид магния. В патенте US №4140626, C10G 23/02, 20.02.1979 описан процесс гидроочистки БКК с использованием катализатора, содержащего металл группы VIB Периодической таблицы и металл группы VIII Периодической таблицы, осажденные на носитель, содержащий не менее 70 мас. % оксида магния.

Общим недостатком указанных катализаторов является высокое остаточное содержание серы в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор селективной гидроочистки углеводородного сырья, описанный в Пат. US №5348928, B01J 21/04, 20.09.1994, содержащий в качестве гидрирующего компонента от 4 до 20 мас. % металла группы VIB Периодической таблицы и от 0,5 до 10 мас. % металла группы VIII Периодической таблицы, а в качестве компонента носителя - от 0,5 до 50 мас. % магния и от 0,02 до 10 мас. % щелочного металла. Недостатком такого катализатора также является высокое содержание серы в продукте гидроочистки БКК при типичных условиях проведения процесса гидроочистки БКК. Степень удаления серосодержащих соединений может быть увеличена за счет применения более жестких условий проведения процесса гидроочистки БКК, однако, при таком варианте проведения процесса гидроочистки неизбежно увеличение степени гидрирования олефиновых углеводородов и значительное снижение октанового числа БКК, а также снижение продолжительности межрегенерационного пробега катализатора.

Изобретение решает задачу создания улучшенного катализатора гидроочистки БКК, характеризующегося оптимальным химическим составом и оптимальными текстурными характеристиками, обеспечивающими повышенную гидрообессеривающую активность и повышенную селективность катализатора в гидроочистке БКК, что позволяет получать бензиновую фракцию с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Задача решается катализатором гидроочистки бензинов каталитического крекинга БКК, содержащим кобальт и молибден в форме оксидов, кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; оксид алюминия - остальное; имеющим удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляющим собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,1 до 0,9.

Отличительным признаком предлагаемого катализатора гидроочистки БКК по сравнению с прототипом является состав катализатора, при этом катализатор содержит, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат - 46,6-84,0%; Al2O3 - остальное.

Выход содержания компонентов за заявляемые границы приводит к снижению активности и/или селективности катализатора.

Вторым существенным отличительным признаком предлагаемого катализатора является то, что он содержит аморфный алюмосиликат с массовым отношением Si/Al от 0,1 до 0,9. Использование аморфного алюмосиликата с соотношением Si/Al, выходящим за границы указанного диапазона, также приводит к снижению активности и/или селективности катализатора.

Технический эффект предлагаемого катализатора гидроочистки бензинов каталитического крекинга складывается из следующих составляющих:

1. Оптимальный химический состав и оптимальные текстурные характеристики, обеспечивающие получение продукта гидроочистки БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

2. Аморфный алюмосиликат в составе катализатора позволяет увеличить селективность катализатора в гидроочистке БКК и снизить величину падения октанового числа бензина при проведении гидроочистки. Кислотные центры алюмосиликата способствуют протеканию реакций изомеризации двойной связи и скелетной изомеризации олефиновых углеводородов, что, с одной стороны, приводит к превращению терминальных олефинов в более устойчивые к гидрированию внутренние олефины, а, с другой стороны, способствует образованию более разветвленных углеводородов, обладающих высоким октановым числом.

Описание предлагаемого технического решения.

Сначала готовят носитель, содержащий оксид алюминия и аморфный алюмосиликат. Навески порошка гидрооксида алюминия AlOOH, имеющего структуру бемита или псевдобемита с размером кристаллов 45-60 Å, со средним размером агломератов 40-50 микрометров, содержащего примеси в количестве, мас.%, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и порошка аморфного алюмосиликата с соотношением Si/Al от 0,1 до 0,9 помещают в смеситель, после чего при постоянном перемешивании последовательно добавляют расчетное количество воды и водных растворов азотной или уксусной кислоты.

Компоненты берут в следующих соотношениях: порошки гидрооксида алюминия и аморфного алюмосиликата:вода:азотная или уксусная кислота = 1:0,6-0,8:0,01-0,03. При этом соотношение аморфный алюмосиликат:оксид алюминия составляет от 1:1 до 9:1.

Перемешивание продолжают в течение 10-480 мин при температуре 15-95°C. В результате образуется однородная пластичная паста. Полученную насту экструдируют через фильеру с отверстиями, форма и размер которых обеспечивают получение гранул с поперечным сечением в форме трилистника с диаметром описанной окружности 1,3-1,7 мм. Экструдирование ведут при давлении 0,5-10,0 МПа. Полученный носитель сушат при температуре 100-150°C и прокаливают при температуре 500-600°C. Далее носитель измельчают по длине до частиц требуемого размера.

В результате получают однородный носитель белого цвета, представляющий собой частицы с сечением в виде трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие прочность не менее 1,0 кг/мм. Носитель содержит, мас. %: аморфный алюмосиликат 50-90%, Al2O3 - остальное и имеет удельную поверхность 150-350 м2/г, объем пор 0,5-1,1 см3/г, средний диаметр пор 5-15 нм.

Далее готовят пропиточный раствор путем растворения рассчитанных количеств парамолибдата аммония и нитрата кобальта (II) в рассчитанном количестве воды.

Полученным раствором пропитывают носитель, содержащий оксид алюминия и аморфный алюмосиликат, при этом используют пропитку носителя по влагоемкости, либо из избытка раствора. Пропитку проводят при температуре 15-95°C в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора, после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора.

После пропитки катализатор сушат на воздухе при температуре 100-250°C, после чего катализатор прокаливают при температуре 450-550°C.

В результате получают катализатор, содержащий, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; Al2O3 - остальное; имеющим удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляющим собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. Согласно известному техническому решению.

100 г оксида алюминия с влагоемкостью 1,2 см3/г помещают в круглодонную колбу. Затем в колбу с носителем приливают 120 мл водного раствора, содержащего 8,58 г парамолибдата аммония и 5,44 г нитрата кобальта (II). Пропитку проводят в течение 2 ч при постоянном вращении колбы с катализатором, затем сушат при 120°C в течение 12 ч и прокаливают при температуре 538°C в течение 3 ч. Далее 30 г гранул, полученных после прокалки, пропитывают водным раствором, содержащим 3,16 г 6-водного нитрата магния и 0,33 г нитрата натрия, с последующей сушкой при 120°C в течение 12 ч и прокалкой при температуре 427°C в течение 2 ч.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 6,3%; CoO - 1,4%; MgO - 1,2%; Na2O - 0,3%; Al2O3 - остальное.

Примеры 2-8 иллюстрируют предлагаемое техническое решение.

Пример 2.

В лабораторный смеситель помещают 35,3 г порошка гидрооксида алюминия AlOOH, имеющего структуру бемита с размером кристаллов 45-60 Å, со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас.%, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,9. Далее в смеситель добавляют раствор, полученный смешением 100 мл дистиллированной воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника с размером от вершины трилистника до середины основания от 1,3 до 1,7 мм. Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°C. Затем экструдаты прокаливают в муфельной печи при температуре 550°C в течение 4 ч.

Навеску приготовленного носителя массой 50 г помещают в круглодонную колбу. Затем в колбу с носителем приливают 30 мл водного раствора, содержащего 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II). Пропитку проводят в течение 1 ч при температуре водяной бани 70°C и постоянном вращении колбы с готовящимся катализатором. По окончании пропитки получены равномерно окрашенные гранулы, не содержащие светлого пятна в центре на изломе. После пропитки гранулы катализаторов сушат при 120°C в течение 4 ч, затем прокаливают при температуре 550°C в течение 3 ч в токе воздуха.

Полученный катализатор имеет следующий состав, мас.%: MoO3 - 5,5%; CoO - 1,1%; аморфный алюмосиликат - 66,5%; Al2O3 - остальное.

Пример 3.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 11,8 г порошка гидрооксида алюминия AlOOH и 90 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,1%; аморфный алюмосиликат - 84,0%; Al2O3 - остальное.

Пример 4.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя. Полученный катализатор имеет следующий состав, мас.%: MoO3 - 5,5%; CoO - 1,0%; аморфный алюмосиликат - 66,0%; Al2O3 - остальное.

Пример 5.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 58,8 г порошка гидрооксида алюминия AlOOH и 50 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас.%: MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 46,6%; Al2O3 - остальное.

Пример 6.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,1. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 66,1%; Al2O3 - остальное.

Пример 7.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 2,04 г парамолибдата аммония и 1,67 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 3,0%; CoO - 0,8%; аморфный алюмосиликат - 67,3%; Al2O3 - остальное.

Пример 8.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 8,64 г парамолибдата аммония и 10,43 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 12,0%; CoO - 4,6%; аморфный алюмосиликат - 58,4%; Al2O3 - остальное.

Приготовленные по примерам 2-8 катализаторы имеют удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм и представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Тестирование катализаторов проводят в проточном реакторе в следующих условиях: температура 280°C, объемная скорость подачи сырья - 4 ч-1, соотношение H2/сырье - 150 нл/нл, давление - 2,5 МПа. В качестве сырья используют широкую фракцию БКК с интервалом кипения н.к. - 220°C, содержанием серы 127 ppm и октановым числом по исследовательскому методу 92,3. Перед каталитическими испытаниями катализатор сульфидируют при температуре 400°C и атмосферном давлении в потоке сероводорода, идущего с расходом 1 л/ч, в течение 2 ч.

Результаты тестирования катализаторов приведены в таблице.

Как видно из приведенных примеров, катализаторы гидроочистки бензина каталитического крекинга имеют более высокую активность и селективность в сравнении с катализатором-прототипом.

Похожие патенты RU2575637C1

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА 2015
  • Климов Олег Владимирович
  • Перейма Василий Юрьевич
  • Леонова Ксения Александровна
  • Корякина Галина Ивановна
  • Носков Александр Степанович
RU2575638C1
СПОСОБ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА 2015
  • Перейма Василий Юрьевич
  • Леонова Ксения Александровна
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Носков Александр Степанович
RU2575639C1
Способ приготовления катализатора гидроочистки бензина каталитического крекинга 2018
  • Климов Олег Владимирович
  • Столярова Елена Александровна
  • Перейма Василий Юрьевич
  • Надеина Ксения Александровна
  • Залесский Сергей Александрович
  • Носков Александр Степанович
RU2687734C1
Катализатор гидроочистки бензина каталитического крекинга 2018
  • Климов Олег Владимирович
  • Столярова Елена Александровна
  • Перейма Василий Юрьевич
  • Надеина Ксения Александровна
  • Залесский Сергей Александрович
  • Носков Александр Степанович
RU2691065C1
Способ гидроочистки бензина каталитического крекинга 2018
  • Климов Олег Владимирович
  • Столярова Елена Александровна
  • Перейма Василий Юрьевич
  • Надеина Ксения Александровна
  • Сайко Анастасия Васильевна
  • Носков Александр Степанович
RU2688155C1
СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2013
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2534999C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2013
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2534998C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2013
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2534997C1
КАТАЛИЗАТОР СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ ДИЕНОВ 2023
  • Саломатина Анна Анатольевна
  • Надеина Ксения Александровна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2811194C1
КАТАЛИЗАТОР, СПОСОБ ПРИГОТОВЛЕНИЯ НОСИТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2011
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Будуква Сергей Викторович
  • Леонова Ксения Александровна
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
  • Парахин Олег Афанасьевич
RU2472585C1

Реферат патента 2016 года КАТАЛИЗАТОР ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор, включающий в свой состав кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат, - 46,6-84,0%, Al2O3 - остальное. Катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа. Технический результат заключается в повышении гидрообессеривающей активности катализатора, а также повышении селективности катализатора, выражающейся в снижении степени гидрирования олефиновых углеводородов и уменьшении величины падения октанового числа бензина каталитического крекинга при проведении гидроочистки. 2 з.п. ф-лы, 1 табл., 8 пр.

Формула изобретения RU 2 575 637 C1

1. Катализатор гидроочистки бензина каталитического крекинга, включающий в свой состав кобальт, молибден, алюминий, отличающийся тем, что он содержит кобальт и молибден в форме оксидов, кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас.%: MoO3 - 3,0-12,0; СоО - 0,8-4,6; аморфный алюмосиликат - 46,6 - 84,0%; Al2O3 - остальное.

2. Катализатор по п. 1, отличающийся тем, что он имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 им и представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

3. Катализатор по п. 1, отличающийся тем, что входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,1 до 0,9.

Документы, цитированные в отчете о поиске Патент 2016 года RU2575637C1

US 5348928 А1, 20.09.1994
СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2013
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
RU2534999C1
СПОСОБ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА 2003
  • Томин В.П.
  • Микишев В.А.
  • А.И.
  • Кузора И.Е.
  • Сливкин Л.Г.
  • Аверин С.Н.
  • Газимзянов Н.Р.
  • Довганюк В.Ф.
RU2242501C1
US 20050023192 А1, 03.02.2005
Способ рацемизации оптически активных галогенангидридов 2,2-диметил-3 /1-алкенил/-циклопропан-1-карбоновых кислот 1974
  • Цунеюки Нагасе
  • Гоху Сузукамо
SU722479A3

RU 2 575 637 C1

Авторы

Леонова Ксения Александровна

Перейма Василий Юрьевич

Климов Олег Владимирович

Корякина Галина Ивановна

Носков Александр Степанович

Даты

2016-02-20Публикация

2015-01-12Подача