Способ устранения пространственных помех относится к методам цифровых вычислений, специально предназначенных для специфических функций, а именно к комплексным математическим операциям для матричных или векторных вычислений. Способ предназначен для помехоустойчивого приема радиосигналов с использованием антенных систем при воздействии помех, поступающих с различных направлений.
Известен способ компенсации помех, действующих по боковым лепесткам диаграммы направленности антенной системы [1]. Описанный принцип лежит в основе всех устройств повышения помехоустойчивости аппаратуры с использованием антенных систем. Данный способ пригоден для использования в системах связи.
Существенным недостатком является потеря информации о пространственном положении источников полезного сигнала, так как выходной сигнал представляет собой взвешенную сумму сигналов элементов антенной системы, а также влияние взаимного расположения элементов антенной системы на ширину провала диаграммы направленности в направлении на источник помехи.
Предлагаемое изобретение нацелено на повышение помехоустойчивости аппаратуры, работающей по сигналам, не превышающим уровень собственных шумов. Информация о пространственном положении не теряется, что позволяет использовать устройства, основанные на данном способе, для формирования повышенного коэффициента усиления антенной системы в направлении на источники полезного сигнала.
Способ устранения пространственных помех обеспечивает удаление помеховой составляющей из каждого приемного канала используемого устройства, обеспечивая сохранение полезной информации в каждом канале. К тому же данный способ является нечувствительным к близкому взаимному расположению элементов антенной системы, что позволяет создать малогабаритную помехоустойчивую аппаратуру.
Предлагаемый способ устранения пространственных помех, в котором сигналы, поступающие с выходов N-элементной антенной системы (где N является любым целым числом, N≥2), оцифровывают в N аналого-цифровых преобразователях (АЦП), обрабатывают в цифровом вычислителе (ЦВ), где рассчитывают ковариационную матрицу (КМ), производят ее спектральное разложение с целью определения множества мощных коррелированных сигналов для их дальнейшего исключения, далее N сигналов, свободные от J мощных некоррелированных помех, при условии N>J, передают на входы устройств, предназначенных для извлечения полезной информации.
Способ устранения пространственных помех предназначен для очистки полезного сигнала от J помех, приходящих с разных направлений на N-элементную антенную систему, при условии N>J.
Реализация предложенного способа поясняется работой устройства, представленного структурной схемой на фиг. 1, где показано:
1 - антенная система;
2 - ВЧ-тракт (усилители, полосовые фильтры);
3 - супергетеродинный приемник;
4 - канал приема;
5 - аналого-цифровой преобразователь;
6 - программируемая логическая интегральная схема;
7 - цифровой вычислитель;
8 - цифровой сигнальный процессор.
Реализация предложенного способа на цифровом вычислителе представлена на фиг. 2, где показано:
9 - элемент задержки входного отсчета на T тактов;
10 - преобразователь Гильберта;
11 - комплексный перемножитель матриц;
12 - комплексный перемножитель векторов;
13 - аккумулятор;
14 - блок запуска;
15 - делитель;
16 - блок спектрального разложения матрицы;
17 - формирователь матрицы.
Реализация предложенного способа для работы в системах с расширенным спектром на цифровом вычислителе представлена на фиг. 3, где показано:
18 - вектор, состоящий из отчетов АЦП, взятых в последовательные моменты времени;
19 - элемент задержки входного отсчета на 1 такт;
20 - канал обработки цифровых данных.
Устранение помех производится на видеочастоте. Для этого выходной сигнал каждого элемента N-элементной антенной системы, после прохождения ВЧ-тракта (2), выделяющего полосу полезного сигнала, преобразуется в сигнал промежуточной частоты супергетеродинным приемником (3) (СГП), после чего подвергается оцифровке в АЦП. Полученные сигналы s1 … sN используются ЦВ (7), состоящим, например, из программируемой логической интегральной схемы (6) (ПЛИС) и цифрового сигнального процессора (8) (ЦСП). В ПЛИС (6) сигналы представляются в виде вектор-строки s=(s1, …, sN) и преобразуются в комплексную форму и помещаются в новый вектор-строку x=(x1, …, xN) для расчета КМ. КМ рассчитывается путем перемножения K таких векторов (где K является любым целым числом >1), взятых последовательно в моменты времени , по формуле
,
где ΔRxx(k) - скалярное произведение векторов в момент времени tk;
Н - символ транспонирования и комплексного сопряжения.
Далее производят усреднение результатов по K выборкам, т.е.
,
где Rxx - ковариационная матрица.
Далее КМ передается в ЦСП (8), где производится ее спектральное разложение Rxx=QΛQH для получения матрицы собственных значений Λ=diag(λ1, λ2, …, λN) и матрицы соответствующих им собственных векторов Q=(q1, q2, …, qN). При наличии на входе N-элементной антенной системы J мощных некоррелированных помех имеется набор из N-J собственных значений, не превосходящих некоторого известного минимального собственного значения λпор, которое равно сумме дисперсии собственного шума приемника и максимально возможной мощности полезного сигнала. Также имеется соответствующий набор из N-J собственных векторов . К тому же имеется набор из J собственных значений, существенно превосходящих λпор, и соответствующий ему набор из J собственных векторов .
Матрица собственных векторов передается обратно в ПЛИС (6), где происходит перемножение вектор-строки x комплексных цифровых сигналов сначала на матрицу , а потом на по формуле
,
где - вектор-строка комплексных цифровых сигналов, свободных от помех, той же размерности, что и х.
Структурная схема практической реализации N-канального устройства устранения помех, работающего по сигналам спутниковой радионавигационной системы Глонасс, приведена на фиг. 2.
Сигналы, оцифрованные с частотой дискретизации fs, поступают в ПЛИС (6), где все операции являются целочисленными. При помощи ПГ (10) формируется мнимая часть вектор-строки x, а действительная часть представляет собой копию входных сигналов, задержанную элементом Z-T (элемент задержки) (18) на количество тактов T, необходимое для выполнения преобразования Гильберта в ПГ (10). Полученный вектор поступает на комплексный перемножитель матриц (11) (КПМ), который в первый момент времени после включения инициализируется единичной матрицей I размерностью N×N
Таким образом, КПМ (11) выступает как повторитель. Одновременно с этим вектор x поступает на комплексный перемножитель векторов (12) (КПВ), где вычисляется матрица ΔRxx. Далее матрица ΔRxx суммируется в аккумуляторе (13) (Акк). Эта процедура повторяется К раз. После чего ПЛИС (6) формирует в ЦСП (8) сигнал готовности (rdy) на блок запуска (14) (на Фиг. 2 - Запуск). ЦСП (8) считывает значения Акк (13), прошедшие через делитель (15) (на фиг. 2 - ÷K), для формирования ковариационной матрицы, в блок спектрального разложения матрицы (16) (на фиг. 2 - СРМ), где вычисляются собственные векторы и собственные значения с использованием сопроцессора с плавающей запятой. После чего ПЛИС (6) обнуляет Акк (13) и снова начинает процедуру наполнения Акк (13). В блоке ФМ (17) формируется матрица с урезанной дробной частью, которая передается в ПЛИС (6) в блок КПМ (11), где происходит перемножение текущего вектора x на матрицу . Результат обработки передают на входы устройств, предназначенных для извлечения полезной информации.
Схема на фиг. 2 пригодна для использования в системах с узкополосными сигналами. На фиг. 3 представлена усовершенствованная схема для работы в системах с расширенным спектром в условиях широкополосных помех. Здесь в каждом канале (20) вводится линия задержки с отводами, состоящая из L элементов задержки на один такт Z-1 (19). Комплексный вектор-строка x формируется из векторов-строк xi (18), которые представляют собой набор отсчетов i-го канала (20) , взятых в последовательные моменты времени и имеющих длину L+1. Таким образом, длина вектор-строки x равна N(L+1). Количество выходных сигналов также равно N(L+1).
Операции ПГ (10), задержки на такт (12) и на T тактов (9), формирование вектор-строки входных данных x, вычисление ковариационной матрицы и перемножение вектор-строки x на матрицу осуществляется в ПЛИС (6) (например, ЕР3С120 фирмы «Altera», относящаяся к семейству Cyclone III). Операции спектрального разложения КМ и формирование матрицы осуществляется в ЦСП (8) (например, 1879ВМ5Я фирмы ЗАО НТЦ «Модуль»). Данный процессор представляет собой высокопроизводительный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Частота следования отсчетов si 25 МГц. Частота работы ПЛИС (6) и ЦСП (8) 250 МГц. ПГ представляет собой дискретный нерекурсивный фильтр 12 порядка с конечной импульсной характеристикой.
Вышеописанный способ позволяет значительно повысить помехоустойчивость аппаратуры, работающей по сигналам, не превышающим уровень собственных шумов. Сохранность информации о пространственном положении источника полезного сигнала позволяет использовать устройства, основанные на данном способе, для формирования повышенного коэффициента усиления антенной системы в направлении на источники полезного сигнала.
Промышленная применимость в вышеописанном способе подтверждается известными из уровня техники элементами и устройствами, которые широко используется в радиоэлектронике.
Источники информации
1. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки. Введение в теорию. / Пер. с англ. под ред. В.А. Лексаченко. - М.: Радио и связь, 1986. - 448 с.
название | год | авторы | номер документа |
---|---|---|---|
Способ адаптивной обработки сигналов в модульной фазированной антенной решетке | 2016 |
|
RU2629921C1 |
СПОСОБ АДАПТИВНОЙ КОМПЕНСАЦИИ ПОМЕХ В РЕАЛЬНОМ ВРЕМЕНИ | 2002 |
|
RU2271066C2 |
СПОСОБ ФОРМИРОВАНИЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ МНОГОЛУЧЕВОЙ АДАПТИВНОЙ АНТЕННОЙ РЕШЕТКИ С ИСПОЛЬЗОВАНИЕМ ПАРАМЕТРИЧЕСКОЙ МОДЕЛИ СПЕКТРА ПРОСТРАНСТВЕННЫХ ЧАСТОТ ВХОДНОГО СИГНАЛА | 2017 |
|
RU2650096C1 |
СПОСОБ И УСТРОЙСТВО ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ РЕЖЕКЦИИ ПОМЕХ В АППАРАТУРЕ ПОТРЕБИТЕЛЕЙ ГЛОБАЛЬНЫХ НАВИГАЦИОННЫХ СПУТНИКОВЫХ СИСТЕМ | 2023 |
|
RU2804922C1 |
СПОСОБ АДАПТИВНОЙ ПРОСТРАНСТВЕННОЙ КОМПЕНСАЦИИ ПОМЕХ ПРИ МОНОИМПУЛЬСНОМ АМПЛИТУДНОМ СУММАРНО-РАЗНОСТНОМ ПЕЛЕНГОВАНИИ И НАЛИЧИИ ОШИБОК КАЛИБРОВКИ ПРИЕМНЫХ КАНАЛОВ | 2011 |
|
RU2456631C1 |
Способ подавления импульсных помех в N-элементной адаптивной антенной решетке | 2021 |
|
RU2776862C1 |
Способ обработки сигналов в модульной адаптивной антенной решетке при приеме коррелированных сигналов и помех | 2015 |
|
RU2609792C1 |
Способ имитации многоканальных рядов наблюдений, в том числе ЭКГ | 2017 |
|
RU2747796C2 |
СПОСОБ ОБНАРУЖЕНИЯ И ЛОКАЛИЗАЦИИ СЛОЖНЫХ СИГНАЛОВ | 2005 |
|
RU2286583C1 |
СПОСОБ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ ИЗЛУЧЕНИЯ НА ОСНОВЕ ОТРАЖЕНИЯ ПОДПРОСТРАНСТВ | 1996 |
|
RU2090901C1 |
Изобретение относится к методам цифровых вычислений, предназначенных для специфических функций, а именно к комплексным математическим операциям для матричных или векторных вычислений. Согласно способу сигналы, поступающие с выходов N-элементной антенной системы, оцифровывают в N аналого-цифровых преобразователях, обрабатывают в цифровом вычислителе, где формируют ковариационную матрицу, раскладывают ее на собственные векторы и собственные значения. Далее N сигналов, свободных от J мощных некоррелированных помех, при условии N>J, передают на входы устройств, предназначенных для извлечения полезной информации. Технический результат заключается в удалении помеховой составляющей из каждого приемного канала используемого устройства, обеспечивая сохранение полезной информации в каждом канале. 3 ил.
Способ устранения пространственных помех, в котором сигналы, поступающие с выходов N-элементной антенной системы, оцифровывают в N аналого-цифровых преобразователях, обрабатывают в цифровом вычислителе, где формируют ковариационную матрицу, раскладывают ее на собственные векторы и собственные значения с целью определения множества мощных коррелированных сигналов для их дальнейшего исключения, далее N сигналов, свободных от J мощных некоррелированных помех, при условии N>J, передают на входы устройств, предназначенных для извлечения полезной информации.
СПОСОБ АДАПТИВНОГО ПОДАВЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПОМЕХ | 2012 |
|
RU2488928C1 |
СПОСОБ И УСТРОЙСТВО АДАПТИВНОЙ ПРОСТРАНСТВЕННОЙ ФИЛЬТРАЦИИ СИГНАЛОВ | 1998 |
|
RU2141706C1 |
СПОСОБ АДАПТИВНОЙ КОМПЕНСАЦИИ ПОМЕХ В РЕАЛЬНОМ ВРЕМЕНИ | 2002 |
|
RU2271066C2 |
СПОСОБ КОМПЕНСАЦИИ УЗКОПОЛОСНЫХ ПОМЕХ | 2004 |
|
RU2269201C2 |
УСТРОЙСТВО КОМПЕНСАЦИИ АКТИВНЫХ ПОМЕХ | 2009 |
|
RU2444751C2 |
US 6150993 A, 21.11.2000 | |||
US 6151373 A, 21.11.2000. |
Авторы
Даты
2016-02-27—Публикация
2014-11-27—Подача