СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗОСОДЕРЖАЩИХ МОНАЦИТОВЫХ КОНЦЕНТРАТОВ Российский патент 2016 года по МПК C22B59/00 C22B3/10 C22B1/02 

Описание патента на изобретение RU2576978C1

Изобретение относится к области гидрометаллургической переработки редкоземельного минерального сырья, в состав которого входят значительные количества железа. Особенностью такого типа концентратов является срощенность оксидов железа с фосфатами редкоземельных металлов (РЗМ), разделение которых крайне затруднено.

В промышленности используется способ переработки высокосортного монацита путем обработки при 140°С в течение 3-4 ч 45-70%-ным раствором NaOH, взятым в количестве примерно 200-300% от стехиометрически необходимого [2]. Полученные в этих условиях гидроксиды РЗМ (при соблюдении мер по недопущению окисления церия) хорошо растворяются в минеральных кислотах [см. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. М.: Металлургия, 1991, с. 353-354). Недостатками данного способа являются высокий расход дорогостоящего реагента, необходимость проведения дополнительных операций по выделению фосфата натрия из получающихся щелочных растворов. В случае железосодержащих монацитов в твердом остатке присутствует смесь оксидов редкоземельных металлов и железа, которые после щелочной дефосфоризации одинаково хорошо [2] растворяются в разбавленных кислотах и поэтому не делятся. Железосодержащие монацитовые концентраты перерабатывают с использованием концентрированной серной кислоты при температуре 200-240°С при 2-3-кратном избытке кислоты. Железо выводится в форме железного фосфогипса и захоранивается. Другие способы предусматривают стадию термической деструкции фосфатов при высоких температурах 1300-1400° в присутствии угля до оксидов РЗМ, растворяющихся в минеральных кислотах, и паров Р2O5. В случае железосодержащих монацитов восстановленный при этих температурах оксид железа не будет разлагаться разбавленной кислотой в силу своей малой химической активности, но для решения поставленной задачи разделения железа и РЗМ высокотемпературный способ является слишком энергозатратным.

Известен способ извлечения церия из кислых растворов экстракцией раствором алкиламина в хлороформе [Патент RU 2070595. Способ извлечения церия / Шевчук И.А., Симонова Т.Н., Рокун А.Н. // Опубл. 20.12.1996], отличающийся тем, что экстракцию ведут из сернокислого раствора н-додециламина в хлороформе в смеси с этанолом с соотношением 10:3. Экстракцию ведут в присутствии восстановителей железного порошка, тиомочевины или аскорбиновой кислоты. Предварительное (перед экстракцией) восстановление мешающей примеси железа (III) до железа (II) осуществляют железной стружкой, мочевиной, сульфитом натрия и т.д. в растворе. При такой организации процесса выбор сорбционных систем со значительными коэффициентами разделения железа (II) и РЗЭ (III) гораздо шире. Недостатком этого способа является изменение химического состава технологических растворов при большом расходе реагентов-восстановителей.

Наиболее близким аналогом является кислотный способ переработки фосфатов редкоземельных металлов азотной и соляной кислотами в присутствии щавелевой кислоты для осаждения оксалатов РЗМ из растворов. [«Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита», патент РФ №214.8019], согласно которому разложение фосфатного редкоземельного концентрата ведут при нагревании 1-2 N азотной или соляной кислотой при Т:Ж 1:2,5÷3,5 в присутствии щавелевой кислоты, которую берут в количестве 10-50 мас.% сверх стехиометрии. Недостатками способа является низкая кинетика растворения фосфатов РЗМ в 1-2 М растворах минеральных кислот, особенно применительно к природным монацитам, использование больших количеств дорогой щавелевой кислоты, необходимость проведения перекристаллизации оксалатов из-за соосаждения оксалатов железа.

Поэтому разработка эффективного способа удаления железа из железосодержащих монацитовых концентратов в начале процесса, который бы позволил существенно упростить процесс извлечения целевых компонентов, снизить расход реагентов и предотвратить образование больших объемов твердых отходов, является чрезвычайно актуальной задачей.

По литературным данным СО является наиболее технологичным восстановителем железа [3]. Однако вплоть до 1400°С в качестве продукта восстановления Fe2O3 образуется смесь FeO, Fe3O4 и Fe в разных соотношениях, которая интегрально представляет собой сильно магнитный продукт с диаметрально противоположной химической активностью. В соответствии с литературными данными, ниже 572°С и относительно небольшом парциальном давлении СО из Fe2O3 образуется преимущественно «FeO», отличающийся большей реакционной способностью в отношении минеральных кислот. Магнетит, упорный в отношении кислот, оснований и галогенидов аммония, в свою очередь, преобладает в продукте, восстановленном при температурах выше 800°С. Все ранее известные способы переработки монацитовых концентратов не касаются железосодержащих концентратов типа австралийского (компания LYNAS) или Чукчутонского (Россия, Сибирь), содержащих 30 и 50% мелкодисперсного Fe2O3, соответственно.

Задача изобретения и технический результат заключается в разработке способа переработки железосодержащих монацитовых концентратов, обеспечивающего выведение из процесса железной составляющей на начальной стадии и предотвращение образования железосодержащих радиоактивных твердых отходов.

Поставленная задача и технический результат решаются способом переработки железосодержащего монацитового концентрата, включающим обработку концентрата монооксидом углерода при 350-400°С, отделение восстановленного железа (FeO) разбавленной соляной кислотой при комнатной температуре и вскрытие монацита новой порцией, разбавленной HCl при 120°С, или любыми другими способами, обеспечивающими дефосфоризацию монацита и перевод в раствор РЗМ.

Сущность изобретения заключается в смещении акцента подготовки концентрата для перевода РЗМ в раствор с дефосфоризации фосфатов на сопровождающий редкоземельные минералы оксид трехвалентного железа, который восстанавливается до оксида двухвалентного железа и вместе с фосфатами РЗМ легко переводится в раствор с помощью разбавленной соляной кислоты, из которого сразу осаждается в форме кристаллогидрата FeCl2·nH2O при 10-40°С, либо сначала обрабатывается экстрагирующим агентом (трибутилфосфатом) для извлечения небольшой части хлоридов РЗМ, перешедших в раствор вместе с FeCI2. Коэффициенты разделения PЗM/Fe2+ примерно в 1000 раз больше, чем PЗM/Fe3+[1].

Основный характер FeO в отличие от амфотерного Fe2O3 позволяет при температурах, близких к комнатной, растворять его в разбавленной соляной кислоте за короткое время (15-60 мин). Скорость растворения железа после обработки СО примерно в 300 раз выше, чем без обработки (при комнатной температуре необработанный восстановителем концентрат практически не растворяется). Связанные с железом фосфаты РЗМ также переходят в раствор, но в несколько раз медленнее. Радиоактивный торий и диоксид кремния отфильтровываются как не растворяющиеся в соляной кислоте. Свободная соляная кислота отгоняется в виде 20%-ного азеотропа и возвращается в голову процесса. В таблице 1 показан состав концентрата по содержанию РЗМ и прочих элементов. Данный состав был у сырья, который подвергали переработке заявленным способом.

Таблица 1 Химический состав концентрата Оксид Содержание, мас/% РЗМ СеO2 16.97 La2O3 9.99 Nd2O3 6.73 Рr6О11 2.19 Gd2O3 0 .97 Eu2O3 0.19 Dy2O3 0.066 Er2O3 0.01 ThO2 0.20 Прочие элементы P2O5 17.12 Fe2O3 32.86 Al2O3 4.55 SiO2 2.36 CaO 2.28 TiO2 1.42 MgO 1.15

Для изменения поведения железа в нужном нам направлении заявленным способом предлагается один прием - это «мягкое» восстановление трехвалентного железа до Fe2+ (реакционного FeO) монооксидом углерода. Восстановленное таким образом железо полностью растворяется за 15-30 минут при температуре 18-20°С, а в нерастворимой части остаются фосфаты РЗМ, диоксид кремния, диоксид титана и радиоактивный торий.

Способ осуществляют следующим образом.

Исходное железосодержащее монацитовое сырье обрабатывают разбавленным в пять раз СО при 350-400°С. В качестве разбавителя берут газ азот. Используемая концентрация монооксида углерода и относительно невысокая температура являются достаточными для эффективного восстановления железа, содержащегося в концентрате, восстановления лантаноидов при этом не происходит. Восстановительная среда защищает церий от окисления, что не нарушает химию дальнейших процессов. Восстановленное железо быстро отмывается разбавленной соляной кислотой при комнатной температуре. Растворы проанализировали методом ICP-OES на содержание основных элементов. Результаты представлены в таблице 2. Для сравнения в этих же условиях растворяли навеску исходного концентрата.

Таблица 2 Сравнительная таблица растворения монацитового концентрата с предварительным низкотемпературным восстановлением железа и без него (HCI 1:3, время 60 минут, температура 22-25°, навеска 10 г, объем кислоты 50 мл) Объект Доля перешедшего в раствор элемента, % СеO2 La2O3 Р2O5 Fe2O3 А12O3 Исходный концентрат 3.5 5.0 4.7 0.3 1.3 Концентрат с восстановленным железом 22.3 9.0 11.7 97.7 26.1

По данным таблицы видно, что скорость растворения железа после его восстановления возрастает более чем в 300 раз, при этом других элементов гораздо меньше (алюминия в 20, церия в 6, а лантана в 2 раза). Железо в раствор переходит практически полностью (97.7-99.4%) в виде FeCl2, а не FeCl3, что очень важно для последующей экстракции РЗМ, поскольку двухвалентное железо в отличие от трехвалентного не экстрагируется. Отмытый водой нерастворимый остаток вскрывали одним из трех способов: 1) 10-12%-ной HCl при кипячении с обратным холодильником; 2) твердофазным фторированием NH4HF2 и 3) обработкой 45%-ным раствором NaOH. Все три способа обеспечивают максимально полную дефосфоризацию фосфатов РЗМ.

Селективность растворения двухвалентного железа показана на графике (Фиг. 1).

Примеры конкретного осуществления способа.

Пример 1

10 г монацитового концентрата обрабатывали смесью газов CO+N2 (1:5) при температуре 380°С в течение 20 мин. Навеску обработанного продукта растворяли в 50 мл 10%-ной HCl с помощью магнитной мешалки в течение 60 мин при температуре 25°С.

Для полного растворения железа достаточно 10-15 минут, поэтому сокращение времени практически не сказывалось на растворении железа, но снижало долю растворившихся РЗМ. Раствор железа отфильтровывали, а остаток заливали новой порцией, разбавленной HCl и кипятили с обратным холодильником в течение 5 ч. Нерастворимый остаток 4.5% массы исходного концентрата содержал в основном SiO2 и радиоактивный торий. Солянокислый раствор подвергали экстракции.

Пример 2.

10 г монацитового концентрата обрабатывали смесью газов CO+N2 (1:5) при температуре 350°С в течение 30 мин. Продукт растворяли в 50 мл 10%-ной HCl с помощью магнитной мешалки в течение 30 мин при температуре 18°С. Раствор отфильтровали, остаток сушили, смешивали с NH4HF2 в соотношении 1:0.75 по массе и выдерживали при 190° в течение 3 ч. Белый рассыпчатый продукт прокаливали при 400°С в течение 30 мин для разложения фтораммониевых комплексов и отгонки кремния с целью возврата в голову процесса примерно 20% фторирующего агента. Образующиеся простые фториды (CeF3, LaF3 и др.) растворяли в кипящей концентрированной соляной кислоте (~120°С) в течение 3 ч, после чего раствор отделяли от нерастворимого остатка, содержащего радиоактивный торий. Солянокислый раствор подвергали экстракции.

Пример 3.

10 г монацитового концентрата обрабатывали смесью газов CO+N2 (l:5) при температуре 350°С в течение 30 мин. Продукт растворяли в 50 мл 10%-ной HCl с помощью магнитной мешалки в течение 15 мин при температуре 24°С. После отделения раствора остаток прогрели в растворе 45%-ного NaOH в течение 3 ч. Продукт выщелачивали водой, содержание фосфора в растворе соответствовало теоретически рассчитанному. Остатки сушили и прокаливали до соответствующих оксидов при 400°С.

Источники информации

1. Воропанова Л.А., Барвинюк Н.Г., Суладзе З.А. Экстракция ионов железа из водных растворов трибутилфосфатом при переработке природного и техногенного сырья. МАТЕРИАЛЫ VII Международной конференции «Устойчивое развитие горных территорий в условиях глобальных изменений». Владикавказ, 14-16 сентября 2010 г.

2. Химия и технология редких и рассеянных элементов. Ч. II. Под ред. К.А. Большакова. М.: Высшая школа. 1976. С. 313.

3. Karbowniczek М. Metallurgical process in ancient shaft furnace - theoretical considerations. Metallurgija-J. of Metallurgy (MJoM). 2006. V. 12. P. 145-154.

4. P.A. Лидин, B.A. Молочко, Л.Л. Андреева. Химические свойства неорганических веществ. М.: «КолосС». 2006. - 480 с.

Похожие патенты RU2576978C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗИСТЫХ РЕДКОЗЕМЕЛЬНЫХ ФОСФАТНЫХ РУД 2013
  • Кузьмин Владимир Иванович
  • Шабанов Василий Филиппович
  • Кузьмин Дмитрий Владимирович
RU2551332C1
Способ переработки монацитового концентрата 2021
  • Локшин Эфроим Пинхусович
  • Тареева Ольга Альбертовна
RU2763464C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ МИНЕРАЛЬНОГО ФОСФАТНОГО СЫРЬЯ 1996
  • Чуб А.В.
  • Дробот Д.В.
  • Криворучко С.Л.
  • Мельникова Е.Г.
RU2092602C1
СПОСОБ ВСКРЫТИЯ МОНАЦИТОВОГО КОНЦЕНТРАТА 2016
  • Шагалов Владимир Владимирович
  • Егоров Николай Борисович
  • Соболев Василий Игоревич
RU2620229C1
СПОСОБ ПЕРЕРАБОТКИ ФОСФАТОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ 1996
  • Локшин Э.П.
  • Маслобоев В.А.
  • Лебедев В.Н.
  • Серкова Р.П.
RU2104941C1
СПОСОБ ПЕРЕРАБОТКИ МОНАЦИТА 2016
  • Муслимова Александра Валерьевна
  • Молоков Пётр Борисович
  • Русаков Игорь Юрьевич
  • Буйновский Александр Сергеевич
RU2633859C1
СПОСОБ ПЕРЕРАБОТКИ МОНАЦИТОВОГО СЫРЬЯ 2017
  • Софронов Владимир Леонидович
  • Муслимова Александра Валерьевна
  • Русаков Игорь Юрьевич
  • Макасеев Юрий Николаевич
  • Молоков Пётр Борисович
  • Шамин Виктор Иванович
  • Макасеев Андрей Юрьевич
RU2667932C1
СПОСОБ ПЕРЕРАБОТКИ МОНАЦИТОВОГО КОНЦЕНТРАТА 2013
  • Акимов Дмитрий Васильевич
  • Дьяченко Александр Николаевич
  • Егоров Николай Борисович
  • Киселёв Александр Дмитриевич
  • Ларин Валерий Константинович
RU2549412C1
СПОСОБ РАЗЛОЖЕНИЯ МОНАЦИТА 2004
  • Низов Василий Александрович
  • Обабков Николай Васильевич
  • Смирнов Алексей Леонидович
  • Михеев Анатолий Александрович
  • Терентьев Герман Дмитриевич
  • Сметанников Владимир Петрович
  • Косынкин Валерий Дмитриевич
  • Леонтьев Владимир Федорович
RU2331681C2
СПОСОБ БИФТОРИДНОЙ ПЕРЕРАБОТКИ РЕДКОГО И РЕДКОЗЕМЕЛЬНОГО МИНЕРАЛЬНОГО СЫРЬЯ 2014
  • Гончаров Анатолий Александрович
  • Калашников Юрий Дмитриевич
  • Мельниченко Евгения Ивановна
  • Коваленко Денис Валерьевич
RU2576710C1

Реферат патента 2016 года СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗОСОДЕРЖАЩИХ МОНАЦИТОВЫХ КОНЦЕНТРАТОВ

Изобретение относится к способу переработки железосодержащих монацитовых концентратов. Способ включает обработку концентрата разбавленной соляной кислотой с получением солянокислых растворов FeCl2 и LnCl3. Затем ведут разложение остатка и получение раствора, содержащего редкоземельные металлы. При этом перед обработкой разбавленной соляной кислотой монацитовый концентрат подвергают восстановлению при 350-400°С монооксидом углерода (СО). Обработку восстановленного концентрата ведут разбавленной соляной кислотой в течение 15-60 минут при комнатной температуре. Разложение обезжелезненного концентрата осуществляют фторированием фтористоводородной кислотой, или гидродифторидом аммония, или их смесью, или сульфатизацией концентрированной H2SO4, или обработкой концентрированным раствором NaOH. Техническим результатом является реализация возможности при низких температурах и низких концентрациях соляной кислоты за короткое время вести переработку монацитовых концентратов, содержащих большое количество (до 1-50 мас.%) Fe2O3. 3 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

Формула изобретения RU 2 576 978 C1

1. Способ переработки железосодержащих монацитовых концентратов, включающий обработку концентрата разбавленной соляной кислотой с получением солянокислых растворов FeCl2 и LnCl3, разложение остатка с получением раствора, содержащего редкоземельные металлы, отличающийся тем, что перед обработкой разбавленной соляной кислотой монацитовый концентрат подвергают восстановлению при 350-400°С монооксидом углерода (СО), а обработку восстановленного концентрата ведут разбавленной соляной кислотой в течение 15-60 минут при комнатной температуре.

2. Способ по п. 1, отличающийся тем, что из солянокислых растворов FeCl2 и LnCl3 отгоняют избыточную соляную кислоту в виде азеотропа и возвращают на стадии растворения в голову процесса.

3. Способ по п. 1, отличающийся тем, что из солянокислых растворов осаждают железо в виде кристаллогидрата FeCl2·nH2O при температуре 10-40°С и используют в качестве сырья для получения Fe2O3.

4. Способ по п. 1, отличающийся тем, что разложение обезжелезненного концентрата осуществляют фторированием фтористоводородной кислотой, или гидродифторидом аммония, или их смесью, или сульфатизацией концентрированной H2SO4, или обработкой концентрированным раствором NaOH.

Документы, цитированные в отчете о поиске Патент 2016 года RU2576978C1

СПОСОБ ПЕРЕРАБОТКИ ФОСФАТНОГО РЕДКОЗЕМЕЛЬНОГО КОНЦЕНТРАТА, ВЫДЕЛЕННОГО ИЗ АПАТИТА 1998
  • Лебедев В.Н.
  • Сергеева С.Д.
  • Маслобоев В.А.
  • Локшин Э.П.
RU2148019C1
RU 2004113426 А, 27.10.2005
RU 94026007 A1, 10.06.1996
EP 0418125 А1, 20.03.1991
АКТИВНАЯ ЗОНА УРАН-ГРАФИТОВОГО ВЫСОКОТЕМПЕРАТУРНОГО ЯДЕРНОГО РЕАКТОРА 2004
  • Жуков Николай Анатольевич
  • Гришанин Евгений Иванович
  • Андреев Леонид Михайлович
  • Фонарев Борис Ильич
  • Филиппов Геннадий Алексеевич
  • Фальковский Лев Наумович
RU2277730C1
БЛОК ТОНКОСЛОЙНОГО ОТСТАИВАНИЯ СО ВСТРОЕННОЙ СИСТЕМОЙ РЕГЕНЕРАЦИИ 2011
  • Амеличкин Станислав Григорьевич
  • Медведев Александр Николаевич
  • Иванов Виктор Григорьевич
RU2508931C2
US 4834793 А, 30.05.1989.

RU 2 576 978 C1

Авторы

Гончаров Анатолий Александрович

Мельниченко Евгения Ивановна

Коваленко Денис Валерьевич

Даты

2016-03-10Публикация

2014-10-08Подача