Изобретение относится к способам переработки облученного ядерного топлива (ОЯТ) реакторов ВВЭР-1000 с целью локализации трития, являющегося бета-активным излучающим нуклидом, на головных операциях переработки ОЯТ и может быть использовано в атомной энергетике при переработке ОЯТ ядерных реакторов.
В настоящее время для переработки ОЯТ используют водно-экстракционные технологии, наиболее острой проблемой которых является наличие больших объемов тритийсодержащих растворов на всех этапах переработки, что существенно усложняет и удорожает переработку жидких радиоактивных отходов (ЖРО). Поэтому до проведения основной водно-экстракционной переработки целесообразно проводить предварительную обработку ОЯТ для локализации трития и других летучих продуктов деления. Предварительная обработка ОЯТ проводится различными окислительными высокотемпературными способами.
Известны способы высокотемпературной окислительной обработки фрагментов с ОЯТ при температуре от 480 до 600°C в присутствии воздуха или кислорода. При этом степень удаления трития из ОЯТ составляет 99% (G.D. DelCui, R.D. Hunt, J.A. Jonsonandother. Advanced head end for the treatment of LWR fuel. OECD Nuclear Energy Agency. 11-th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation Hyatt at Fisherman′s Wharf, San Francisco, California, 1-5 November 2010).
Известен способ двухстадийной высокотемпературной окислительной обработки фрагментов ОЯТ, по которому первую стадию проводят при температуре 400÷650°C в воздушной среде, дополнительно содержащей углекислый газ в количестве 1÷4 об.%, в течение 60÷360 минут, вторую стадию проводят при температуре 350÷450°C в воздушной или обогащенной по кислороду среде, содержащей водяной пар в количестве, соответствующему точке росы парогазовой смеси при температуре 30÷40°C, в течение 30÷120 минут (Патент RU 2459299, МПК G21F 9/30, 2006.01, «СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА»).
По технической сущности и достигаемому положительному эффекту этот способ является наиболее близким к заявляемому способу и выбран в качестве прототипа.
Недостаток прототипа заключается в повышенной возгонке цезия на первой стадии процесса высокотемпературной окислительной обработки ОЯТ, значительном уносе из топливной композиции высокоактивного изотопа Cs137, что приводит к дополнительным проблемам дезактивации используемого оборудования, а также к значительной нагрузке на систему улавливания трития из газовой фазы, осуществляемую с помощью цеолитов NaA с последующей изоляцией цеолитов.
Техническим результатом предлагаемого изобретения является снижение уноса цезия из волоксидируемого ОЯТ, снижение нагрузки на систему улавливания трития из газового потока и снижение количества тритийсодержащих твердых радиоактивных отходов (ТРО).
Технический результат достигается предложенным способом, который включает двустадийную волоксидацию ОЯТ с обработкой ОЯТ на первой стадии воздухом, дополнительно содержащим углекислый газ, в течение 60÷360 минут при температуре 400÷650°C и обработкой на второй стадии воздухом или кислородно-воздушной смесью, содержащей дополнительно пары воды в количестве, соответствующему точке росы при температуре 30÷40°C, при температуре 350÷450°C и постоянной механоактивации реакционной массы на каждой из стадий, при этом содержание углекислого газа в газовой смеси первой стадии составляет 4÷10 об.%, время обработки ОЯТ на второй стадии составляет 60÷360 минут, выводимый из реакционной камеры газовый поток охлаждают, конденсат отделяют и направляют на получение цементного компаунда, а неконденсируемый газовый поток направляют в систему газоочистки.
В частном варианте газовый поток охлаждают до температуры 0-5°C.
В другом частном варианте на охлаждение и конденсацию направляют только газовый поток второй стадии.
На первой стадии происходит разрушение структуры диоксида урана, окисление трития до тритиевой воды и удаление основной массы трития, включая удаление из третированного гидроксида цезия по реакции:
На второй стадии удаляется особо прочно адсорбированная тритиевая вода (T2O; НТО), удерживаемая на дефектах и дислокациях решетки окисленных форм по реакциям изотопного обмена типа:
Обе стадии проводят при постоянной механоактивации реакционной массы, обеспечивающей улучшенный доступ газа-реагента к топливу за счет обновления поверхности. Расход газового потока на каждой стадии соответствует 10÷50 полным обменам объема реакционной камеры в час. Для уменьшения общей продолжительности обработки и достижения требуемой степени волоксидации ОЯТ газовый поток перед входом в реакционную камеру подогревается до температуры внутреннего объема камеры, т.е. до 400÷650°C - на первой стадии и до 350÷450°C - на второй стадии соответственно.
Пример осуществления способа.
Проверку режимов волоксидации облученного топлива проводили с использованием фрагментов тепловыделяющих элементов (твэлов) длиной 32 мм ОТВС ВВЭР-1000 Балаковской АЭС с выгоранием 51,89 ГВт·сут/т урана после 10-летней выдержки. Степень волоксидации определяли весовым методом, определяя массу разрушенного топлива. Определение концентрации трития выполняли с использованием жидкосцинтилляционного комплекса СКС-07П-Б11. Определение концентрации цезия выполняли с использованием гамма-спектрометрического комплекса СКС-07П-Г7.
Для сравнения прототипа и заявленного способа проведено два опыта при одинаковой продолжительности стадий обработки в течение 360 мин.
В первом опыте волоксидацию фрагментов твэлов проводили по следующему режиму: первая стадия проводилась при температуре 550±50°C в воздушной среде, дополнительно содержащей углекислый газ в количестве 1÷4 об.%, в течение 360 минут, при предварительном подогреве смеси воздуха и углекислого газа до 550±50°C, вторая стадия проводилась при температуре 350÷450°C в воздушной среде, содержащей водяной пар в количестве, соответствующем точке росы парогазовой смеси при температуре 30÷40°C, в течение 360 минут, на второй стадии парогазовую смесь подогревали перед вводом в реакционную камеру до 350÷450°C. Расход газового потока на каждой стадии поддерживали около 30 полных обменов объема реакционной камеры в час.
Во втором опыте волоксидацию фрагментов твэлов проводили по следующему режиму: первая стадия проводилась при температуре 550±50°C в воздушной среде, дополнительно содержащей углекислый газ в количестве 4÷10 об.%, в течение 360 минут, при предварительном подогреве смеси воздуха и углекислого газа до 550±50°C, вторая стадия проводилась в тех же условиях, что и в первом опыте. Расход газового потока на каждой стадии поддерживали около 30 полных обменов объема реакционной камеры в час.
Масса ОЯТ как в первом, так и во втором опыте составляла 250 г.
Объем реакционной камеры как в первом, так и во втором опыте был равен 0,75 л.
Как в первом, так и во втором опыте горячий газовый поток после волоксидации пропускали через металлотканевый фильтр для очистки потока от аэрозольного уноса.
Далее, в опыте 1 газовый поток пропускали через охлаждаемый слой цеолита NaA, после чего направляли в систему газоочистки.
В опыте 2 газовый поток предварительно охлаждали до 0°C, отделяли образующийся конденсат, а неконденсируемый газовый поток пропускали через свежий слой цеолита, после чего направляли в систему газоочистки.
Результаты опытов были следующими.
Степень волоксидации ОЯТ в обоих опытах составила не менее 99%. Извлечение трития в обоих опытах составило не менее 99,97%. Унос цезия в опыте 1 составил 0,1%, в опыте 2 - 0,01%. Привес слоя цеолита, обусловленный поглощением воды, составил 5,5 г в опыте 1 и 0,67 г в опыте 2. Соответственно, объем конденсата в опыте 2 составил ~6 мл.
Таким образом, проведение окислительной обработки по предлагаемому способу позволяет понизить унос цезия в 10 раз, снизить нагрузку на систему улавливания трития и, соответственно, снизить количество тритийсодержащих ТРО более чем в 8 раз.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2011 |
|
RU2459299C1 |
СПОСОБ ОКИСЛИТЕЛЬНОЙ ОБРАБОТКИ (ВОЛОКСИДАЦИИ) ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2016 |
|
RU2619583C1 |
СПОСОБ ОКИСЛИТЕЛЬНОЙ ОБРАБОТКИ (ВОЛОКСИДАЦИИ) ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2017 |
|
RU2654536C1 |
СПОСОБ РЕГЕНЕРАЦИИ АЗОТНОЙ КИСЛОТЫ ИЗ ТРИТИЙСОДЕРЖАЩЕГО ГАЗОВОГО ПОТОКА | 2017 |
|
RU2664127C1 |
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2015 |
|
RU2591215C1 |
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2014 |
|
RU2556108C1 |
СПОСОБ КОНЦЕНТРИРОВАНИЯ РАДИОАКТИВНЫХ ОТХОДОВ | 2015 |
|
RU2596816C1 |
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЁННОГО ЯДЕРНОГО ТОПЛИВА | 2015 |
|
RU2603019C1 |
Установка для очистки газовых потоков от летучих соединений цезия и йода, образующихся в процессе высокотемпературной обработки отработавшего ядерного топлива | 2023 |
|
RU2808719C1 |
СПОСОБ УДАЛЕНИЯ УГЛЕРОДА-14 ИЗ РЕАКТОРНОГО ГРАФИТА | 2017 |
|
RU2660169C1 |
Изобретение относится к способам переработки облученного ядерного топлива (ОЯТ) реакторов ВВЭР-1000 с целью локализации трития, являющегося бета-активным излучающим нуклидом, на головных операциях переработки ОЯТ и может быть использовано в атомной энергетике при переработке ОЯТ ядерных реакторов. Способ заключается в двухстадийной окислительной обработке отработавшего ядерного топлива (волоксидации ОЯТ) из диоксида урана и включает на первой стадии термическую обработку фрагментов ОЯТ при температуре 400÷650°C в воздушной среде, дополнительно содержащей углекислый газ, в течение 60-360 мин, после чего предусмотрена вторая стадия - обработка при температуре 350÷450°C в воздушной или обогащенной по кислороду среде, дополнительно содержащей пары воды в количестве, соответствующем точке росы при 30-40°C. При этом обе стадии проводятся при постоянной или периодической механоактивации реакционной массы, причем содержание углекислого газа в газовой смеси первой стадии составляет 4÷10 об.%, время обработки ОЯТ на второй стадии составляет 60-360 мин, выводимый из реакционной камеры газовый поток охлаждают, конденсат отделяют и направляют на получение цементного компаунда, а неконденсируемый газовый поток направляют в систему газоочистки. Техническим результатом является снижение уноса цезия в 10 раз, а также снижение количества тритийсодержащих ТРО более чем в 8 раз при проведении окислительной обработки при одинаковой степени волоксидации. 2 з.п. ф-лы.
1. Способ двухстадийной окислительной обработки отработавшего ядерного топлива (волоксидации ОЯТ) из диоксида урана, включающий на первой стадии термическую обработку фрагментов ОЯТ при температуре 400÷650°C в воздушной среде, дополнительно содержащей углекислый газ, в течение 60-360 мин и на второй стадии термическую обработку при температуре 350÷450°C в воздушной или обогащенной по кислороду среде, дополнительно содержащей пары воды в количестве, соответствующем точке росы при 30-40°C, при этом обе стадии проводятся при постоянной или периодической механоактивации реакционной массы, отличающийся тем, что содержание углекислого газа в газовой смеси первой стадии составляет 4÷10 об. %, время обработки ОЯТ на второй стадии составляет 60-360 мин, выводимый из реакционной камеры газовый поток охлаждают, конденсат отделяют и направляют на получение цементного компаунда, а неконденсируемый газовый поток направляют в систему газоочистки.
2. Способ по п. 1, отличающийся тем, что выводимый газовый поток охлаждают до температуры 0-5°C.
3. Способ по п.1 или 2, отличающийся тем, что на охлаждение и конденсацию направляют только газовый поток второй стадии.
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2011 |
|
RU2459299C1 |
СПОСОБ ПЕРЕРАБОТКИ МЕТАЛЛИЧЕСКИХ ОТХОДОВ, СОДЕРЖАЩИХ РАДИОНУКЛИДЫ | 2004 |
|
RU2268515C1 |
JP 2001318194 А, 16.11.2001 | |||
Способ получения модифицированного крахмала из зернового крахмала | 1981 |
|
SU1054413A1 |
Авторы
Даты
2016-04-10—Публикация
2015-01-12—Подача