СПОСОБ ОПРЕДЕЛЕНИЯ МОЩНОСТИ КВАДРАТУРНЫХ СОСТАВЛЯЮЩИХ РАДИОСИГНАЛА Российский патент 2016 года по МПК G01R21/00 

Описание патента на изобретение RU2582907C1

Изобретение относится к области измерительной техники и может быть использовано для измерения мощности радиосигнала в тракте, демодуляции сигнала, измерений амплитуды напряжения переменного тока, в частности к области измерений мощности сигнала путем измерений напряжения.

Известен классический способ измерений мощности радиосигнала методом прямых измерений, с использованием ваттметров различной конструкции, состоящим в нагреве энергией электромагнитной волны чувствительного элемента ваттметра. Данный метод подходит для измерений суммарной мощности нескольких сигналов в тракте, но не позволяет измерить мощность двух квадратурных составляющих одного сигнала отдельно друг от друга.

Другим способом является измерение проходящей СВЧ-мощности при помощи специализированного устройства (патент РФ №2071701 от 29.06.1994). Для уменьшения переменной составляющей погрешности рассогласования в полосе частот в предложенном устройстве, содержащем отрезок прямоугольного волновода, в его широкую и узкую стенки встроены две поглощающие пластины с установленными на них термодатчиками одинаковой длины, позволяющего измерять составляющие мощности сигнала. Однако так как предложенное устройство использует эффект нагрева чувствительного элемента, то также не позволяет проводить измерения мощности квадратурных составляющих сигнала по отдельности.

Также известен способ определения составляющих мощности, основанный на измерении мгновенных значений тока и напряжения, формировании сигнала, ортогонального измеренному напряжению (с сохранением его нормы) по формулам преобразования Гильберта, вычислении действующего значения напряжения и пересчете норм полученных сигналов в активную и реактивную составляющие мощности (патент РФ 2191393 от 09.08.2000). Предложенный метод, хоть и позволяет оценить ортогональные составляющие мощности при работе на комплексную нагрузку, оценивает мощность только одного сигнала.

Техническим результатом от внедрения изобретения является возможность определения мощности квадратурных составляющих радиосигнала отдельно друг от друга.

Данный технический результат достигается за счет того, что одновременно осуществляется измерение мощности сигнала PΣ, являющейся суммарной мощностью его квадратурных составляющих, а также демодуляция сигнала. В процессе демодуляции происходит измерение амплитуд огибающих демодулированных сигналов квадратурных составляющих UI(p-p) и UQ(p-p), затем при последующей дополнительной обработке результатов демодуляции производится компенсация паразитного набега фазы сигнала путем расчета обратной матрицы поворота. На заключительном этапе, в процессе решения системы уравнений (1):

производится расчет мощностей квадратурных составляющих PI и PQ. Предложенный метод отличается от перечисленных тем, что оценка мощности производится после математической обработки результатов демодуляции, чего ранее не применялось. Именно такой подход позволяет измерить мощности составляющих сигнала даже при существенной разнице их мощностей, а также разнице несущей частоты сигнала и частоты демодуляции.

Предложенный способ измерений состоит в том, что результаты измерений получаются в результате совместной обработки измеренных значений суммарной мощности сигналов и амплитуд огибающих квадратурных сигналов. Измерения проходят в три этапа.

На первом этапе методом прямых измерений при помощи ваттметра измеряется суммарная мощность сигнала (т.е. суммарная мощность его квадратурных составляющих), а также осуществляется демодуляция сигнала с выделением огибающих каждой из квадратурных составляющих. Демодуляция сигнала может проводиться аналоговыми, аналого-цифровыми или полностью цифровыми методами. Так как частота демодуляции и частота сигнала в тракте в большинстве случаев не совпадают в силу невозможности синхронизации источника сигнала и демодулятора, то фазы демодулированных сигналов могут получать дополнительные паразитные приращения, выражающиеся в эффекте «перетекания» мощности одной квадратуры в демодулированный сигнал другой, и наоборот. При этом значение амплитуды демодулированного сигнала перестает нести информацию только об одной квадратуре, поэтому требуется дополнительная обработка результатов демодуляции.

На втором этапе осуществляется компенсация паразитного набега фазы. Паразитный набег фазы можно представить как поворот сигнального созвездия на комплексной плоскости относительно ее осей, причем абсцисса точек, образующих поворачивающуюся фигуру, - результат демодуляции одной квадратуры, ордината - другой квадратуры. Это можно описать матричным уравнением (2):

здесь S ( t ) - комплексный вектор демодулированного сигнала, A ( t ) - комплексный вектор исходного сигнала, C(t) - матрица поворота на угол φ0.

Очевидно, что в случае наличия набега фазы φdif(t) матрица поворота C(t) будет также изменяться вместе с набегом фазы и будет соответствовать матрице поворота на угол φ=(φ0dif(t)). В результате отслеживания положения радиус-вектора S во времени рассчитывается угол его поворота относительно начального положения, угловая скорость его вращения и другие параметры, позволяющие получить зависимость паразитного набега фазы от времени. На основании полученных значений рассчитывается обратная матрица поворота созвездия сигналов C-1, восстанавливаются неискаженные паразитным набегом фазы результаты демодуляции по формуле (3):

Элементы вектора A : AI и AQ - временные зависимости модулирующих импульсных последовательностей. Из них рассчитываются амплитуды огибающих демодулированных сигналов UI(p-p) и UQ(p-p), также анализ временных зависимостей AI и AQ позволяет оценить погрешность рассчитанных значений амплитуд, обусловленных зашумленностью исходного сигнала.

На третьем этапе производится расчет мощностей исходя из того, что их сумма и соотношение известны, т.е. решается система уравнений (1).

Применимость метода на практике подтверждается многочисленными лабораторными и натурными экспериментами. Результаты измерений приведены в таблице 1. Обозначения величин без штрихов приведены для параметров эталонного сигнала, используемого при апробации метода, обозначения величин со штрихами - результаты измерений величин при помощи ваттметра и аналого-цифрового демодулятора.

Таким образом, появилась возможность определения мощности квадратурных составляющих радиосигнала независимо друг от друга. Этим достигается технический результат.

Похожие патенты RU2582907C1

название год авторы номер документа
СПОСОБ ДЕМОДУЛЯЦИИ КРАТКОВРЕМЕННЫХ СИГНАЛОВ С МНОГОУРОВНЕВОЙ АБСОЛЮТНОЙ ФАЗОВОЙ МОДУЛЯЦИЕЙ В УСЛОВИЯХ ЗАМИРАНИЙ 2018
  • Ивков Сергей Витальевич
  • Нохрин Олег Александрович
  • Печурин Вячеслав Викторович
RU2684605C1
УСТРОЙСТВО РАДИОЛОКАЦИОННОЙ СТАНЦИИ С НЕПРЕРЫВНЫМ ЛИНЕЙНО-ЧАСТОТНО-МОДУЛИРОВАННЫМ СИГНАЛОМ И СИНТЕЗОМ АПЕРТУРЫ 2017
  • Кочнев Павел Эдуардович
  • Антонов Сергей Леонидович
  • Колтышев Евгений Евгеньевич
  • Янковский Владимир Тадэушевич
  • Фролов Алексей Юрьевич
  • Антипов Владимир Никитич
  • Валов Сергей Вениаминович
  • Мухин Владимир Витальевич
RU2660450C1
КОГЕРЕНТНЫЙ ДЕМОДУЛЯТОР AM-СИГНАЛА С ИСПОЛЬЗОВАНИЕМ ВЗВЕШЕННОЙ СУММЫ НИЖНЕЙ БОКОВОЙ ПОЛОСЫ/ВЕРХНЕЙ БОКОВОЙ ПОЛОСЫ ДЛЯ ПОДАВЛЕНИЯ ПОМЕХ 2004
  • Крегер Брайан Уилльям
RU2342772C2
Способ определения параметров движения высокоскоростного воздушного объекта 2023
  • Мищенко Евгений Николаевич
  • Павлов Валерий Максимович
  • Зехцер Владимир Олегович
RU2807316C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ПЕРЕДАТЧИКА МОБИЛЬНЫМ ПЕЛЕНГАТОРОМ 2006
  • Козьмин Владимир Алексеевич
  • Рембовский Юрий Анатольевич
  • Трембачев Анатолий Владимирович
  • Уфаев Владимир Анатольевич
  • Уфаев Денис Владимирович
  • Уфаев Андрей Владимирович
RU2316784C1
ДВУХРЕЖИМНАЯ СИСТЕМА СВЯЗИ С ЧАСТОТНОЙ МОДУЛЯЦИЕЙ И С МНОЖЕСТВЕННЫМ ДОСТУПОМ С КОДОВЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ 1995
  • Питер Дж.Блэк
  • Натаниель Б.Вильсон
RU2142205C1
ПРИЕМНИК И СПОСОБ ДЛЯ ОБРАБОТКИ РАДИОСИГНАЛОВ С ИСПОЛЬЗОВАНИЕМ МЯГКИХ ПИЛОТ-СИМВОЛОВ 2009
  • Кэйрнс Дуглас А.
  • Йонссон Элиас
RU2519566C2
СИСТЕМА, УСТРОЙСТВО И СПОСОБ РАДИОСВЯЗИ 2010
  • Михота Норихито
RU2447587C1
СИСТЕМА, УСТРОЙСТВО И СПОСОБ РАДИОСВЯЗИ 2012
  • Михота Норихито
RU2542335C2
СПОСОБ ДОПЛЕРОВСКОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДВИЖЕНИЯ АЭРОЛОГИЧЕСКОГО РАДИОЗОНДА И РАДИОЛОКАЦИОННАЯ СИСТЕМА ЕГО РЕАЛИЗУЮЩАЯ 2023
  • Носков Владислав Яковлевич
  • Галеев Ринат Гайсеевич
  • Богатырев Евгений Владимирович
  • Иванов Вячеслав Элизбарович
  • Малыгин Иван Владимирович
RU2808775C1

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ МОЩНОСТИ КВАДРАТУРНЫХ СОСТАВЛЯЮЩИХ РАДИОСИГНАЛА

Изобретение относится к области измерительной техники и может быть использовано для измерения мощности радиосигнала в тракте, демодуляции сигнала, измерений амплитуды напряжения переменного тока, в частности к области измерений мощности сигнала путем измерений напряжения. Одновременно осуществляется измерение мощности сигнала PΣ, являющейся суммарной мощностью его квадратурных составляющих, а также демодуляции сигнала. В процессе демодуляции происходит измерение амплитуд огибающих демодулированных сигналов квадратурных составляющих UI(p-p) и UQ(p-p), затем при последующей дополнительной обработке результатов демодуляции производится компенсация паразитного набега фазы сигнала путем расчета обратной матрицы поворота. На заключительном этапе, в процессе решения системы уравнений

производится расчет мощностей квадратурных составляющих PI и PQ. Технический результат заключается в возможности определения мощности квадратурных составляющих радиосигнала отдельно друг от друга. 1 табл.

Формула изобретения RU 2 582 907 C1

Способ определения мощности квадратурных составляющих радиосигнала, заключающийся в одновременном измерении мощности сигнала , являющейся суммарной мощностью его квадратурных составляющих, и демодуляции сигнала, измерении амплитуд огибающих демодулированных сигналов квадратурных составляющих и , последующей дополнительной обработке результатов демодуляции, включающей в себя компенсацию паразитного набега фазы сигнала путем расчета обратной матрицы поворота, и последующем расчете мощностей квадратурных составляющих и в процессе решения системы уравнений:
.

Документы, цитированные в отчете о поиске Патент 2016 года RU2582907C1

СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ МОЩНОСТИ 2000
  • Агунов А.В.
RU2191393C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПРОХОДЯЩЕЙ МОЩНОСТИ СВЧ И КВЧ 1994
  • Белявцев Вадим Борисович[Ua]
  • Волков Владимир Михайлович[Ua]
  • Жуков Сергей Александрович[Ru]
RU2071701C1
СПОСОБ АДАПТИВНОГО И СОГЛАСОВАННОГО ПОДАВЛЕНИЯ ФЛУКТУАЦИОННЫХ ШУМОВ И СОСРЕДОТОЧЕННЫХ ПОМЕХ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Иевлев Сергей Викторович
  • Соловьев Юрий Александрович
  • Сергиенко Александр Иванович
  • Ситников Александр Сергеевич
  • Тютюнников Максим Анатольевич
RU2539573C1
US 7773693 B2, 10.08.2010.

RU 2 582 907 C1

Авторы

Завгородний Алексей Сергеевич

Печерица Дмитрий Станиславович

Даты

2016-04-27Публикация

2015-04-09Подача