СПОСОБ И УСТРОЙСТВО УПРАВЛЕНИЯ ОХЛАЖДЕНИЕМ РЕЗЦА Российский патент 2016 года по МПК B23Q11/14 B23B27/10 

Описание патента на изобретение RU2586189C2

Изобретение относится к области высокоскоростной обработки деталей на оборудовании с ЧПУ, в частности к системам повышения точности при механической обработке изделий за счет управляемого охлаждения режущего инструмента.

Наиболее близким к изобретению по технической сущности является устройство охлаждения режущего инструмента [Патент РФ №2470757, кл. B23Q 11/10, 2006 (аналог)].

Недостатком данного устройства является отсутствие режима управления скоростью охлаждения режущего инструмента.

Известно устройство охлаждения режущего инструмента для повышения точности при обработке деталей на оборудовании с ЧПУ [Патент РФ №2486992, кл. B23Q 11/14, 2006 (прототип)].

Недостатком данного устройство является отсутствие возможности управления силой тока для более эффективного управления скоростью охлаждения режущего инструмента.

Известен способ охлаждения режущей части инструмента [Патент РФ №1255384, кл. B23Q 11/10, 2006 (аналог)].

Недостатком данного способа является применение инструмента сложной конструкции с внутренними полостями для смазочно-охлаждающей жидкости.

Известен способ охлаждения режущего инструмента для повышения точности при обработке деталей на оборудовании с ЧПУ [Патент РФ №2486992, кл. B23Q 11/14, 2006 (прототип)].

Недостатком данного способа является то, что в нем не предусмотрен режим регулирования силой тока.

Технической задачей изобретения является повышение точности при механической обработке изделий на станках с ЧПУ за счет управления скоростью охлаждения резца и увеличение скорости резания при обеспечении заданной точности.

Поставленная задача решается тем, что в известное устройство, включающее компьютер, резец с термоэлементом, генератор постоянного тока, нечеткий контроллер, введена система активного контроля, включающая в себя датчики скорости, подачи и тока.

Сущность изобретения поясняется чертежами, где на Фиг. 1 приведена схема устройства управления охлаждением резца, на Фиг. 2 представлен график для входной величины - температура режущей части резца, на Фиг. 3 представлен график для входной величины - подачи режущего инструмента, на Фиг. 4 представлен график для входной величины - скорость резания, на Фиг. 5 представлен график для выходной величины - сила тока, на Фиг. 6 представлен результат преобразования вектора функции принадлежности i″ в единственное четкое значение.

Устройство управления охлаждением резца содержит деталь 1, переднюю бабку 2, заднюю бабку 3, резец с термоэлементом 4, резцедержатель 5, исполнительные механизмы оборудования с ЧПУ 6, управляемый генератор тока 7, компьютер 8, токопровод 9, нечеткий контроллер 10, систему активного контроля 11, включающую датчик скорости резания 12, датчик подачи 13 и датчик тока 14, термопару 15.

Связи в устройстве управления охлаждением резца расположены следующим образом: первый выход компьютера 8 соединен первым входом с передней бабкой 2, второй выход компьютера 8 соединен с задней бабкой 3, третий выход компьютера 8 соединен с управляемым генератором тока 7, четвертый выход компьютера 8 соединен с исполнительными механизмами оборудования с ЧПУ 6, которые подключены к резцедержателю 5 с закрепленным в нем резцом с термоэлементом 4, который с помощью токопроводов 9 соединен с выходом управляемого генератора тока 7. Деталь 1 закреплена в передней бабке 2 и задней бабке 3. Первый вход нечеткого контроллера 10 соединен с выходом блока системы активного контроля 11, состоящей из датчика скорости резания 12, датчика подачи 13, датчика сила тока 14, второй вход нечеткого контроллера 10 соединен с термопарой 15, третий выход нечеткого контроллера 10 соединен со вторым входом управляемого генератора тока 7.

Устройство управления охлаждением резца работает следующим образом. При вращении детали 1, установленной в передней бабке 2 и задней бабке 3, и прохождении по ее поверхности резца 4 в зоне резания происходит нагрев режущей части резца 4 и поверхности детали 1, вследствие чего возникают температурные деформации, которые приводят к ухудшению качества обрабатываемой поверхности детали 1.

Для уменьшения температурной деформации и обеспечения управления скоростью охлаждения резца 4 нечеткий контроллер 10 в реальном времени получает данные о температуре режущей части резца от термопары 15, данные о текущем значении скорости резания и подачи от датчиков 12 и 13, затем, исходя из нечетких правил управления, регулирует выходные значения сила тока с генератора постоянного тока 7. При этом если температура резца 4 увеличивается, то необходимо усилить охлаждение резца с помощью увеличения тока, подаваемого на термоэлемент резца с термоэлементом 4 от управляемого генератора постоянного тока 7. В противном случае необходимо ослабить охлаждение резца с помощью уменьшения подачи тока на термоэлемент резца 4 от управляемого генератора постоянного тока 7. Таким образом, осуществляется управляемое охлаждение резца 4, что позволяет увеличить скорость обработки детали при обеспечении заданной точности, без использования смазочно-охлаждающей жидкости.

Способ управления охлаждением резца заключается в следующем.

Первым шагом способа является формирование функций принадлежностей термов входных переменных: температуры в зоне резания T (фиг. 2), подачи режущего инструмента S (фиг. 3) и скорости резания V (фиг. 4). Выходным параметром является величина силы тока I (фиг. 5), подаваемого на элемент Пельтье:

где t - численные значения температуры режущей части резца 4 с термоэлементом; μ(t)→[0, 1] - соответствующие величинам температуры значения функции принадлежности (из интервала от 0 до 1); s - численные значения подачи режущего инструмента; μ(s)→[0, 1] - соответствующие величинам подачи режущего инструмента значения функции принадлежности (из интервала от 0 до 1); ν - численные значения скорости резания; μ(ν)→[0, 1] - соответствующие величинам скорости резания значения функции принадлежности (из интервала от 0 до 1); i - численные значения сила тока; μ(i)→[0, 1] - соответствующие величинам сила тока значения функции принадлежности (из интервала от 0 до 1).

Функции принадлежностей входных переменных T, S и V состоят из трех термов. Для температуры T=[Т1]+[Т2]+[Т3] (фиг. 2), для подачи S=[S1]+[S2]+[S3] (фиг. 3), для скорости резания V=[V1]+[V2]+[V3] (фиг. 4). Функция принадлежности для выходной переменной I состоит из 11 термов - сила тока I=[I1]+[I2]+[I3]+[I4]+[I5]+[I6]+[I7]+[I8]+[I10]+[I11] (фиг. 5).

Вторым шагом способа является фазификация, при которой в зависимости от текущего значения температуры t, полученного от термопары 15, значения скорости резания v, и значения подачи s, полученного от датчиков 12 и 13, формируется фаззифицированный вектор значений для каждого терма функции принадлежности t′, s′ и ν′, где текущее значение температуры t является аргументом μ(t), а текущее значение подача s является аргументом μ(s), а текущее значение скорости резания ν является аргументом μ(ν), позволяя найти количественное значение из интервала [0, 1] для t′=μ(t), s′=μ(s) и ν′=μ(ν). Этап фазификации считается законченным, когда будут найдены значения t′, s′ и ν′ для трех термов функций принадлежностей входных величин T, S и V:

Третьим шагом способа является агрегация, при которой с помощью операции нечеткой логики «И» выбирается минимальное значение из термов входных переменных:

где

При этом вектор значений B={b1, b2, … b27) ставит в соответствие каждому элементу своего множества bi, где i=1…27 одно из двадцати семи нечетких правил управления:

НПУ 1: Если «t=t1» И «s=s1» И «ν=ν1» То «i=i11»;

НПУ 2: Если «t=t1» И «s=s1» И «ν=ν2» То «i=i10»;

НПУ 3: Если «t=t1» И «s=s1» И «ν=ν3» То «i=i9»;

НПУ 4: Если «t=t1» И «s=s2» И «ν=ν1» То «i=i10»;

НПУ 5: Если «t=t1» И «s=s2» И «ν=ν2» То «i=i9»;

НПУ 6: Если «t=t1» И «s=s2» И «ν=ν3» То «i=i8»;

НПУ 7: Если «t=t1» И «s=s3» И «ν=ν1» То «i=i9»;

НПУ 8: Если «t=t1» И «s=s3» И «ν=ν2» То «i=i8»;

НПУ 9: Если «t=t1» И «s=s3» И «ν=ν3» То «i=i7»;

НПУ 10: Если «t=t2» И «s=s1» И «ν=ν1» То «i=i8»;

НПУ 11: Если «t=t2» И «s=s1» И «ν=ν2» То «i=i7»;

НПУ 12: Если «t=t2» И «s=s1» И «ν=ν3» То «i=i6»;

НПУ 13: Если «t=t2» И «s=s2» И «ν=ν1» То «i=i7»;

НПУ 14: Если «t=t2» И «s=s2» И «ν=ν2» То «i=i6»;

НПУ 15: Если «t=t2» И «s=s2» И «ν=ν3» То «i=i5»;

НПУ 16: Если «t=t2» И «s=s3» И «ν=ν1» То «i=i6»;

НПУ 17: Если «t=t2» И «s=s3» И «ν=ν2» То «i=i5»;

НПУ 18: Если «t=t2» И «s=s3» И «ν=ν3» То «i=i4»;

НПУ 19: Если «t=t3» И «s=s1» И «ν=ν1» То «i=i5»;

НПУ 20: Если «t=t3» И «s=s1» И «ν=ν2» То «i=i4»;

НПУ 21: Если «t=t3» И «s=s1» И «ν=ν3» То «i=i3»;

НПУ 22: Если «t=t3» И «s=s2» И «ν=ν1» То «i=i4»;

НПУ 23: Если «t=t3» И «s=s2» И «ν=ν2» То «i=i3»;

НПУ 24: Если «t=t3» И «s=s2» И «ν=ν3» То «i=i2»;

НПУ 25: Если «t=t3» И «s=s3» И «ν=ν1» То «i=i3»;

НПУ 26: Если «t=t3» И «s=s3» И «ν=ν2» То «i=i2»;

НПУ 27: Если «t=t3» И «s=s3» И «ν=ν3» То «i=i1».

Так, например, пятый элемент b 5 = min [ t 1 ' ; s 2 ' ; ν 2 ' ] вектора B, определяется с помощью пятого нечеткого правила управления НПУ 5: Если «t=t1» И «s=s2» И «ν=ν2» То «i=i9».

На четвертом шаге способа осуществляется композиция нечетких правил. На пятом шаге способа методом аккумуляции происходит объединение новых термов и формирование выходного нечеткого вектора функций принадлежности силы тока. На шестом шаге способа с помощью метода центра тяжести рассчитывается четкое выходное значение выходной переменной силы тока

i " = j = 1 n i 1..11 μ ' ( i ) 1 11 j = 1 n μ ' ( i ) 1 11 ( 4 )

где i1…11 - численные значения выходного сила тока (от минимального до максимального значения); μ'(i)1…11 - новые значения выходной величины сила тока в виде новых термов функций принадлежности.

В качестве примера разберем управление величиной силы тока, позволяющее контролировать интенсивность охлаждения резца с термоэлементом за счет увеличения силы тока, подаваемого на термоэлемент резца 4 от управляемого генератора постоянного силы тока 7.

Шаг 1. Строим по формуле (1) функции принадлежности для входных и выходной величин. На фиг. 2 представлен график для входной величины - температуры режущей части резца с термоэлементом 4 - T=(t1, t2, t3), на фиг. 3 представлен график для входной величины - подачи режущего инструмента - S=(s1, s2, s3). На фиг. 4 в представлен график для входной величины - скорость резания - V=(ν1, ν2, ν3), на фиг. 5 представлен график для выходной переменной: величины сила тока - I={i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11).

Функция принадлежности для входной переменной температуры T

Для подачи S функция принадлежности запишется в виде

Для скорости резания V функция принадлежности запишется в виде

|

Для выходной переменной величины силы тока I функция принадлежности примет вид

Шаг 2. При поступлении данных в нечеткий контроллер 10 о текущем значении температуры режущей части резца от термопары 15, данных о текущем значении скорости резания и подачи от датчиков 12 и 13 в нем производится перерасчет согласно нечетким правилам управления. Например, если t=574°C, s=0,22 мм/об и ν=163 м/мин, то вектор фаззификации значений для каждого терма входной функции принадлежности t′, s′ и ν′ (фиг. 2, 3 и 4), рассчитанный по формуле 2, выглядит так:

t ' = ( t 1 ' , t 2 ' , t 3 ' ) = ( 0 ; 0,28 ; 0,72 ) ,

s ' = ( s 1 ' , s 2 ' , s 3 ' ) = ( 0,8 ; 0,2 ; 0 ) ,

ν ' = ( ν 1 ' , ν 2 ' , ν 3 ' ) = ( 0 ; 0,93 ; 0,07 ) .

Термы, имеющие нулевой результат, в дальнейших расчетах использоваться не будут.

Шаг 3. На этапе агрегации находится вектор B по формуле 3.

b1=0, b2=0, b3=0, b4=0, b5=0, b6=0, b7=0, b8=0, b9=0, b10=0, b11=0.28, b12=0.07, b13=0, b14=0.2, b15=0.07, b16=0, b17=0, b18=0, b19=0, b20=0.72, b21=0.07, b22=0, b23=0.2. b24=0.07, b25=0, b26=0, b27=0.

Шаг 4. На этапе композиции отбираются нечеткие правила, которые имеют пересечение. Это нечеткие правила с номерами 11, 12, 14, 15, 20, 21, 23 и 24.

НПУ 11: Если «t=t2» И «s=s1» И «ν=ν2» То «i=i7»;

НПУ 12: Если «t=t2» И «s=s1» И «ν=ν3» То «i=i6»;

НПУ 14: Если «t=t2» И «s=s2» И «ν=ν2» То «i=i6»;

НПУ 15: Если «t=t2» И «s=s2» И «ν=ν3» То «i=i5»;

НПУ 20: Если «t=t3» И «s=s1» И «ν=ν2» То «i=i4»;

НПУ 21: Если «t=t3» И «s=s1» И «ν=ν3» То «i=i3»;

НПУ 23: Если «t=t3» И «s=s2» И «ν=ν2» То «i=i3»;

НПУ 24: Если «t=t3» И «s=s2» И «ν=ν3» То «i=i2»;

Затем методом нечеткой композиции определяются степени функции принадлежности, которые характеризуются новыми значениями выходной величины сила тока в виде новых термов функций

μ′(i)1=0, μ′(i)2=min{0,07; μ(i)2},

μ′(i)3=min{0.2; μ(i′)3}, μ′(i′)4=min{0,72; μ(i)4},

μ′(i)5=0, μ′(i)6=min{0,2; μ(i)6},

μ′(i)7=min{0,28; μ(i)7}, μ′(i)8=0,

μ′(i)9=0, μ′(i)10=0, μ′(i)11=0.

Шаг 5. На этапе аккумуляции происходит объединение всех новых термов и формируется нечеткий вектор функций принадлежности I′. Графический результат показан на фиг. 6.

Шаг 6. На этапе дефазификации по методу центра тяжести (формула 4) вектор функции принадлежности I преобразуется в единственное четкое значение (фиг. 6).

С помощью предложенного способа осуществляется расчет нового значения силы тока для управления скоростью охлаждения резца с термоэлементом 4.

Таким образом, предлагаемый способ и реализующее его устройство позволят в режиме реального времени осуществлять управление скоростью охлаждения резца с термоэлементом путем перерасчета силы тока в случае изменения параметров режима резания.

Похожие патенты RU2586189C2

название год авторы номер документа
Способ и устройство управления термоэлементом 2020
  • Бобырь Максим Владимирович
  • Булатников Валентин Альбертович
  • Алтухов Дмитрий Олегович
RU2752492C1
СПОСОБ И УСТРОЙСТВО ОХЛАЖДЕНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА ДЛЯ ПОВЫШЕНИЯ ТОЧНОСТИ ПРИ ОБРАБОТКЕ ДЕТАЛЕЙ НА ОБОРУДОВАНИИ С ЧПУ 2011
  • Червяков Леонид Михайлович
  • Титов Виталий Семенович
  • Бобырь Максим Владимирович
  • Анциферов Артем Всеволодович
RU2486992C2
УСТРОЙСТВО УПРАВЛЕНИЯ ПОДАЧЕЙ ПРИ ТОКАРНОЙ ОБРАБОТКЕ ДЕТАЛЕЙ НА ОБОРУДОВАНИИ С ЧПУ 2010
  • Бобырь Максим Владимирович
  • Беломестная Анна Леонидовна
  • Титов Дмитрий Витальевич
  • Локтионов Аскольд Петрович
RU2458773C2
Способ и устройство мобильного робота для прохождения замкнутых контуров и лабиринтов 2017
  • Кулабухов Сергей Алексеевич
  • Бобырь Максим Владимирович
  • Якушев Алексей Сергеевич
RU2670826C9
Устройство и способ управления температурой в зоне резания 2017
  • Бобырь Максим Владимирович
  • Абдулджаббар Мухаммед Абдулла
  • Якушев Алексей Сергеевич
RU2676114C1
Способ и устройство для управления охлаждением режущего инструмента при обработке изделий на оборудовании с ЧПУ 2018
  • Лунева Марина Юрьевна
  • Дородных Александр Алексеевич
  • Якушев Алексей Сергеевич
  • Бобырь Максим Владимирович
  • Архипов Александр Евгеньевич
RU2709125C2
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ НЕЧЕТКОЙ ИНФОРМАЦИИ 1998
  • Данилюк С.Г.
  • Злобин В.И.
  • Ванюшин В.М.
RU2158441C2
ДИФФЕРЕНЦИАЛЬНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВЕРТИКАЛЬНОГО ПРОФИЛЯ КОНЦЕНТРАЦИИ ГАЗОВ В АТМОСФЕРЕ 2014
  • Стерлядкин Виктор Вячеславович
RU2557335C1
СПОСОБ ДЕПЕРСОНАЛИЗАЦИИ ПЕРСОНАЛЬНЫХ ДАННЫХ 2012
  • Куракин Александр Сергеевич
RU2538913C2
СПОСОБ ОПРЕДЕЛЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ВЯЗКОСТИ НЕФТЕПРОДУКТОВ, ОХЛАЖДАЮЩИХ И ТЕХНИЧЕСКИХ ЖИДКОСТЕЙ 2021
  • Казимиров Владимир Иосифович
  • Глухова Ирина Олеговна
RU2780261C1

Иллюстрации к изобретению RU 2 586 189 C2

Реферат патента 2016 года СПОСОБ И УСТРОЙСТВО УПРАВЛЕНИЯ ОХЛАЖДЕНИЕМ РЕЗЦА

Изобретение относится к области высокоскоростной обработки деталей на станках с ЧПУ. Устройство, реализующее предложенный способ управления, содержит последовательно соединенные термопару, установленную с возможностью измерения температуры в режущей части резца, нечеткий контроллер и управляемый генератор постоянного тока, соединенный с термоэлементом, выполненным в виде элемента Пельтье, блок активного контроля, состоящий из датчика скорости резания, датчика подачи резца и датчика силы тока, подаваемого на упомянутый термоэлемент, при этом второй вход нечеткого контроллера соединен с выходом блока активного контроля. Устройство позволяет в режиме реального времени осуществлять управление скоростью охлаждения режущей части лезвийного инструмента посредством использования соответствующих нечетких правил управления силой тока, подаваемого на элемент Пельтье. Использование изобретения позволяет повысить точность механической обработки изделий с увеличением при этом скорости обработки. 2 н.п. ф-лы, 6 ил.

Формула изобретения RU 2 586 189 C2

1. Способ управления охлаждением резца с установленным в нем термоэлементом, включающий измерение температуры режущей части резца посредством термопары и, при несовпадении значений упомянутой температуры с заданным значением, изменение силы тока, протекающего через термоэлемент, выполненный в виде элемента Пельтье, посредством генератора постоянного тока, управляемого с помощью нечетких правил управления, отличающийся тем, что измеряют величины подачи резца и скорости резания, а упомянутым генератором постоянного тока управляют с использованием следующих нечетких правил управления
НПУ 1: Если «t=t1» И «s=s1» И «v=v1» То «i=i11»;
НПУ 2: Если «t=t1» И «s=s1» И «v=v2» То «i=i10»;
НПУ 3: Если «t=t1» И «s=s1» И «v=v3» То «i=i9»;
НПУ 4: Если «t=t1» И «s=s2» И «v=v1» То «i=i10»;
НПУ 5: Если «t=t1» И «s=s2» И «v=v2» То «i=i9»;
НПУ 6: Если «t=t1» И «s=s2» И «v=v3» То «i=i8»;
НПУ 7: Если «t=t1» И «s=s3» И «v=v1» То «i=i9»;
НПУ 8: Если «t=t1» И «s=s3» И «v=v2» То «i=i8»;
НПУ 9: Если «t=t1» И «s=s3» И «v=v3» То «i=i7»;
НПУ 10: Если «t=t2» И «s=s1» И «v=v1» То «i=i8»;
НПУ 11: Если «t=t2» И «s=s1» И «v=v2» То «i=i7»;
НПУ 12: Если «t=t2» И «s=s1» И «v=v3» То «i=i6»;
НПУ 13: Если «t=t2» И «s=s2» И «v=v1» То «i=i7»;
НПУ 14: Если «t=t2» И «s=s2» И «v=v2» То «i=i6»;
НПУ 15: Если «t=t2» И «s=s2» И «v=v3» То «i=i5»;
НПУ 16: Если «t=t2» И «s=s3» И «v=v1» То «i=i6»;
НПУ 17: Если «t=t2» И «s=s3» И «v=v2» То «i=i5»;
НПУ 18: Если «t=t2» И «s=s3» И «v=v3» То «i=i4»;
НПУ 19: Если «t=t3» И «s=s1» И «v=v1» То «i=i5»;
НПУ 20: Если «t=t3» И «s=s1» И «v=v2» То «i=i4;
НПУ 21: Если «t=t3» И «s=s1» И «v=v3» То «i=i3»;
НПУ 22: Если «t=t3» И «s=s2» И «v=v1» То «i=i4»;
НПУ 23: Если «t=t3» И «s=s2» И «v=v2» То «i=i3»;
НПУ 24: Если «t=t3» И «s=s2» И «v=v3» То «i=i2»;
НПУ 25: Если «t=t3» И «s=s3» И «v=v1» То «i=i3»;
НПУ 26: Если «t=t3» И «s=s3» И «v=v2» То «i=i2»;
НПУ 27: Если «t=t3» И «s=s3» И «v=v3» То «i=i1»,
где t1…3 - численные значения температуры режущей части резца,
s1…3 - численные значения подачи резца,
v1…3 - численные значения скорости резания,
i1…11 - численные значения силы тока от минимального до максимального значения,
при этом осуществляют перерасчет упомянутой силы тока по формуле

где μ'(i)1…11 - новые значения величины силы тока в виде новых термов функций принадлежности.

2. Устройство для управления охлаждением резца с установленным в нем термоэлементом способом по п. 1, содержащее последовательно соединенные термопару, установленную с возможностью измерения температуры в режущей части резца, нечеткий контроллер и управляемый генератор постоянного тока, соединенный с термоэлементом, выполненным в виде элемента Пельтье, блок активного контроля, состоящий из датчика скорости резания, датчика подачи резца и датчика силы тока, подаваемого на упомянутый термоэлемент, при этом второй вход нечеткого контроллера соединен с выходом блока активного контроля.

Документы, цитированные в отчете о поиске Патент 2016 года RU2586189C2

СПОСОБ И УСТРОЙСТВО ОХЛАЖДЕНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА ДЛЯ ПОВЫШЕНИЯ ТОЧНОСТИ ПРИ ОБРАБОТКЕ ДЕТАЛЕЙ НА ОБОРУДОВАНИИ С ЧПУ 2011
  • Червяков Леонид Михайлович
  • Титов Виталий Семенович
  • Бобырь Максим Владимирович
  • Анциферов Артем Всеволодович
RU2486992C2
УСТРОЙСТВО ОХЛАЖДЕНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2011
  • Емельянов Сергей Геннадьевич
  • Титов Виталий Семенович
  • Бобырь Максим Владимирович
  • Анциферов Артем Всеволодович
RU2470757C2
ОХЛАЖДАЕМЫЙ РЕЗЕЦ 1992
  • Васильев Венедикт Геннадиевич
RU2024361C1
KR 100902070 B1, 09.06.2009
JP 2003266209 A, 24.09.2003.

RU 2 586 189 C2

Авторы

Бобырь Максим Владимирович

Титов Виталий Семенович

Насер Абдулдаиам Абдулджалил Хаил

Даты

2016-06-10Публикация

2014-06-20Подача