СРЕДСТВА, СТИМУЛИРУЮЩИЕ РЕГЕНЕРАЦИЮ ТКАНЕЙ Российский патент 2016 года по МПК A61K45/00 A61K31/23 A61K31/52 A61K31/55 A61K31/47 A61K31/395 A61P43/00 

Описание патента на изобретение RU2599289C2

Изобретение относится к медицине, конкретно к фармакологии, клеточным технологиям и регенеративной медицине.

Известны различные средства, стимулирующие регенерацию тканей [1-3].

Наиболее близкими по техническому результату являются средства, стимулирующие регенерацию тканей, механизмом действия которых является воздействие на различные рецепторы к факторам роста [1, 3].

Недостатком данных средств является их недостаточная эффективность [3].

Адекватных аналогов предлагаемые средства, стимулирующие регенерацию тканей, по технической сущности не имеют.

Задачей, решаемой настоящим изобретением, является расширение арсенала эффективных средств, стимулирующих регенерацию тканей.

Поставленная задача достигается применением в качестве средств, стимулирующих регенерацию тканей, фармакологических веществ, оказывающих прямое действие на PI3K-, PKB-, PKC-, NF-κВ-, MAPK-, JAK/STAT, цАМФ-, PKA/CREB-опосредованный сигналинг в прогениторных клетках.

Новым в предлагаемом изобретении является использование в качестве средств, стимулирующих регенерацию тканей, фармакологических веществ, оказывающих прямое действие на PI3K-, PKB-, PKC-, NF-κВ-, MAPK-, JAK/STAT, цАМФ-, PKA/CREB-опосредованный сигналинг в прогениторных клетках.

Полученные в последние годы сведения о свойствах и закономерностях жизнедеятельности мультипотентных клеток-предшественников открыли возможность развития фармакологической стратегии клеточной терапии [1]. При этом наиболее физиологичным подходом к решению задач регенеративной медицины в рамках данной стратегии является стимуляция функций собственных стволовых клеток (СК) организма лекарственными средствами - аналогами регуляторов физиологических функций [2, 3]. Наиболее часто для этих целей используют генноинженерные ростовые факторы (аналоги цитокинов), воздействующие в каждом конкретном случае на специфические рецепторы тех или иных типов прогениторных клеток [1, 4]. Однако плейотропность и полифункциональность цитокинов в ряде случаев не позволяют рассматривать их (особенно аналоги раннедействующих факторов роста) в качестве оптимальных средств для решения задач регенеративной медицины. Кроме того, белковая природа этих веществ предопределяет их достаточно высокую токсичность, обусловленную иммуногенностью, а также неспособность использования внутрь [3, 4], хотя пероральный прием препаратов является наиболее комплаентным в регенеративной медицине, когда предполагается длительное, многократно повторяющимися курсами, применение лекарственных средств. Кроме того, существуют и другие «недостатки» цитокинов, определяемые их фармакокинетическими характеристиками (в частности, их неспособность проникать через гематоэнцефалицеский барьер, что делает невозможным их эффективное использование для воздействия на СК нервной ткани при заболеваниях ЦНС).

Указанное обстоятельство делает необходимым разработку новых патогенетически обоснованных способов и подходов к активации функций прогениторных клеток с целью использования их ростового потенциала для стимуляции регенерации тканей в условиях патологических состояний. При этом известно, что стимулирующее влияние факторов роста после их взаимодействия с рецепторами передается посредством передачи сигнала с помощью внутриклеточных вторичных мессенджеров сигнальной трансдукции [5-7]. Причем, существуют вещества, способные проникать через мембрану клеток и оказывать прямое влияние на отдельные звенья сигнального каскада, участвующего в реализации определенных функций клеток, в том числе пролиферации и дифференцировки [5-7].

Однако возможность стимуляции ростового потенциала прогениторных клеток с целью терапии различных заболеваний путем ускорения регенерации органов и тканей организма фармакологическими веществами, оказывающими прямое воздействие на внутриклеточные пути передачи сигнала в прогениторных клетках, стимулирующие их функции, не изучена. Эксперимент показал непредсказуемые результаты.

Факт применения фармакологических веществ, оказывающих прямое воздействие на внутриклеточные пути передачи сигнала в прогениторных клетках, с достижением нового технического результата, заключающегося в стимуляции регенерации тканей организма, для специалиста является неочевидным.

Новые свойства не вытекают явным образом из уровня техники в данной области и не обнаружены в патентной и научно-технической литературе.

Предлагаемое изобретение может быть использовано в медицине.

Исходя из вышеизложенного, следует считать заявляемое техническое решение соответствующим критериям: «Новизна», «Изобретательский уровень», «Промышленная применимость».

Эксперименты проведены на экспериментальных животных, полученных из питомника отдела экспериментального биомедицинского моделирования ФГБУ «НИИ фармакологии имени Е.Д. Гольдберга» СО РАМН.

Исследования проводили в соответствии с правилами лабораторной практики (GLP), утвержденными Приказом МЗСР РФ №708н от 23.08.2010 «Об утверждении правил лабораторной практики» и «Методическими рекомендациями по изучению специфической активности средств для регенеративной медицины» (Дыгай A.M., Зюзьков Г.Н., Жданов В.В. и др.) // Руководства по проведению доклинических исследований новых лекарственных средств. Часть первая / Под ред. А.Н. Миронова. - М.: Гриф и К, 2013. - С.776-787 (944 с.) [2]. В качестве потенциальных «мишеней» воздействия фармакологических путей исследованы все основные пути внутриклеточной сигнальной трансдукции (PI3K-, PKB-, PKC-, NF-κВ-, цАМФ-, PKA/CREB-, MAPK-, JAK/STAT-сигнальные пути) [5-8]. В качестве фармакологических веществ, оказывающих прямое воздействие на внутриклеточную сигнальную трансдукцию, использовали широкий спектр как активаторов, так и ингибиторов отдельных сигнальных молекул [5-8]. Данное обстоятельство позволяет делать обобщенные выводы о принципиальной возможности и эффективности использования всех аналогичных по механизму действия веществ для достижения технического результата.

Пример 1

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое воздействие на PKA (протеинкиназу А)

В настоящее время известна важная роль PKA/CREB (cAMP response element-binding protein)-сигналинга в определении функционального состояния различных клеток, заключающаяся в его ингибирующем влиянии на их пролиферативную активность [6].

Исследование проводилось на 46 беспородных мышах. Регенераторную (терапевтическую) активность фармакологического вещества, оказывающего прямое воздействие на РКА прогениторных клеток, и механизмы его действия изучали на модели плоскостной кожной раны [9]. На депилированном участке спины у мышей под легким эфирным наркозом вырезали лоскут кожи размером 10×10 мм. Для моделирования более длительного заживления струп с экспериментальной раны регулярно (через сутки) снимали.

В качестве фармакологического вещества, оказывающего прямое воздействие на PKA-опосредованный сигналинг, использовали специфический ингибитор PKA N-2-(p-bromocinnamyl-amino)-ethyl-5-isoquinolihe sulfon-amide dihydrochloride (H-89) (Sigma, США) [9]. Вещество H-89 использовали в виде раствора наружно в объеме 30 мкл (микролитров) в концентрации 10 мкМ (микромоль), начиная с первого дня после моделирования раны, ежедневно в течение всего периода заживления. Режим применения вещества в предварительных экспериментах был определен как наиболее эффективный.

Критериями стимулирующего регенерацию действия служили средний диаметр раны и результаты гистологического исследования биоптатов кожи мышей, полученных на 3, 5 и 15-е сутки из края раневого дефекта. Биопсийные образцы раневого дефекта кожи окрашивали гематоксилин-эозином. Оценивали: рельеф регенерата кожи, степень и характер инфильтрации, наличие и выраженность отека, количество новообразованных сосудов, волосяных фолликулов и потовых желез. Изучали такие патоморфологические процессы, как акантоз, гиперкератоз, дискератоз. На 3-и и 5-е сут методом клонирования определяли содержание мезенхимальных клеток-предшественников (КОЕ-Ф) в раневой поверхности [2]. Кроме того, определяли прямое влияние Н-89 (в концентрации 10 мкМ) на рост КОЕ-Ф, их пролиферативную активность и интенсивность дифференцировки (ИД-КОЕ-Ф) [2]. Обработку результатов проводили методом вариационной статистики с использованием t критерия Стьюдента и непараметрического U критерия Манна-Уитни.

В ходе эксперимента заживление ран у контрольных животных отмечалось к 18 сут опыта. Использование ингибитора PKA способствовало значительному ускорению процессов регенерации. Заживление дефекта в данном случае наблюдалось к 13-м сут опыта. При этом имело место наиболее выраженное снижение размера ран (табл.1).

Таблица 1 Динамика среднего диаметра ран, в см (X±m) Сроки исследования/сутки Контроль ингибитор PKA 1 1,1±0,01 1,1±0,02 3 0,98±0,02 0,88±0,01* 5 0,9±0,02 0,82±0,02* 7 0,76±0,03 0,7±0,02 9 0,57±0,01 0,51±0,01* 12 0,28±0,03 0,20±0,02* 13 0,20±0,02 0,0±0,0 14 0,1±0,03 0,0±0,0 16 0,06±0,03 0,0±0,0 * - отмечена достоверность относительно контроля при p<0,05

При гистологическом исследовании на 3-й день после воздействия в обеих группах на поверхности раны обнаруживался лейкоцитарно-некротический слой, содержащий фибрин, под которым находился тонкий слой грануляционной ткани с большим количеством клеточных элементов: в основном нейтрофилов и макрофагов. Воспалительный процесс распространялся на нижележащий слой поперечно-полосатых мышц. Межмышечные прослойки были отечны и инфильтрированы лейкоцитами. По краям раны отек и гиперемия дермы, разрастание эпидермиса, который содержал 8-10 слоев однородных, недифференцированных крупных клеток округлой формы и толстый роговой слой. На 5-е сут новообразованный эпителий по краям раны представлял собой пласт клеток неодинаковой толщины без вертикальной анизоморфности. Передний край эпителия был истончен и в виде клина наползал на рану, а в грануляционной ткани отмечалось большое количество капилляров, имеющих вертикальный ход. При этом наружное применение Н-89 существенно снижало лейкоцитарную инфильтрацию краев раны, дермы и нижележащих тканей на 3-и сут опыта. Кроме того, использование ингибитора PKA увеличивало на 5-е сут эксперимента количество фибробластов в слое грануляций, которые при этом образовывали значительные по размеру тяжи клеток.

Анализ морфологических процессов, протекающих в области раневого дефекта кожи мышей на 15-е сут, показал, что в контрольной группе имело место формирование неполноценного регенерата. В подавляющем большинстве случаев поверхностный эпителий наблюдался не на всем протяжении, встречались небольшие участки отслойки эпидермиса от дермы с наличием субэпидермальных щелей, отмечалось резкое утолщение эпителиального пласта с нечеткой дифференцировкой слоев и увеличение количества базального, зернистого и рогового слоев. Внутриэпителиально обнаруживались нейтрофильные лейкоциты с формированием микроабсцессов, наблюдались слабовыраженные явления акантоза, гипер- и дискератоза. Подлежащая ткань была представлена созревающими грануляциями с умеренной гистиоцитарно-лейкоцитарной инфильтрацией, явлением отека и очагами кровоизлияний в верхних слоях дермы. Во всех образцах в прилежащей к зоне дефекта ткани отмечалось малое количество волосяных фолликулов и потовых желез. Регенерат кожи у животных контрольной группы характеризовался умеренным воспалением, что привело к усиленной пролиферации эпителия, для которой характерны атипические разрастания и изменения эпителия в виде акантоза, гипер- и дискератоза. Изучение гистоструктуры раневого дефекта в группе животных, получавших терапию ингибитором PKA, показало формирование более полноценного регенерата - в большей степени эпителизированного соединительнотканного рубца.

Изучение механизмов регенеративного действия Н-89 выявило его выраженное влияние на резидентные клетки-предшественники. Применение специфического ингибитора PKA сопровождалось существенным увеличением числа КОЕ-Ф в раневой поверхности (табл.2). В то же время было выявлено и выраженное прямое влияние Н-89 на прогениторные клетки. Внесение ингибитора PKA в культуру миелокариоцитов сопровождалось значительным увеличением выхода в метилцеллюлозной среде числа КОЕ-Ф, их пролиферативной активности и интенсивности дифференцировки (табл.3).

В целом, полученные результаты свидетельствуют о наличии выраженной регенеративной активности у фармакологического вещества, оказывающего прямое воздействие на PKA-опосредованный сигналинг в прогениторных клетках, специфического ингибитора PKA. При этом в основе его терапевтического действия лежит активация функций резидентных мезенхимальных предшественников (содержащих в своем составе помимо стромальных прекурсоров мультипотентные (истинные) СК, способные дифференцироваться в эпителиоциты [6]), связанная с прямым влиянием ингибитора сигнальной молекулы PKA на предшественники. Выявленная специфика механизмов действия Н-89 указывает на принципиальную возможность и перспективность разработки на основе специфических ингибиторов PKA средства для регенеративной медицины [2, 6].

Таблица 2 Содержание мезенхимальных клеток-предшественников в раневой поверхности, на 2,5×105 нуклеаров, (X±m) Сроки исследования/сутки Контроль ингибитор PKA 3-и 0,55±0,15 1,9±0,02* 5-е 1,07±0,3 3,3±0,2* * - отмечена достоверность относительно контроля при p<0,05

Таблица 3 Число КОЕ-Ф и КОЕ-Ф в S-фазе в культуре клеток костного мозга при добавлении ингибитора PKA, (X±m) Группы КОЕ-Ф, на 2,5×105 миелокариоцитов КОЕ-Ф в S-фазе, в % ИДКОЕ-Ф, в усл. ед. контроль 9,6±0,7 26,3±4,5 1,36±0,14 ингибитор PKA 14,94±1,65* 89,7±5,63* 3,57±0,21* * - отмечена достоверность относительно контроля при p<0,05

Пример 2

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое воздействие на аденилатциклазу

В настоящее время известно ингибирующее влияние цАМФ-зависимых сигнальных путей на пролиферативную активность клеточных элементов [6].

Исследование проводилось на 42 беспородных мышах. Регенераторную (терапевтическую) активность изучали на модели плоскостной кожной раны. На депилированном участке спины у мышей под легким эфирным наркозом вырезали лоскут кожи размером 10×10 мм. Для моделирования более длительного заживления струп с экспериментальной раны регулярно (через сутки) снимали [9].

В качестве фармакологического вещества, оказывающего прямое воздействие на цАМФ-опосредованный сигналинг, использовали блокатор (ингибитор) аденилатциклазы (2′,5′-дидеоксиаденозин, 2′,5′-dideoxyadenosine) (Calbiochem, США) [6]. Вещество использовали наружно (в объеме 30 мкл раствора) в концентрации 30 мкМ, начиная с первого дня после моделирования раны, ежедневно в течение всего периода заживления. Режим применения вещества в предварительных экспериментах был определен как наиболее эффективный.

Критериями стимулирующего регенерацию действия служили средний диаметр раны и результаты гистологического исследования биоптатов кожи мышей, полученных на 3, 5 и 15-е сутки из края раневого дефекта. Биопсийные образцы раневого дефекта кожи окрашивали гематоксилин-эозином. На 3-и и 5-е сут методом клонирования определяли содержание мезенхимальных клеток-предшественников (КОЕ-Ф) в раневой поверхности [2]. Кроме того, определяли прямое влияние 2′,5′-dideoxyadenosine (в концентрации 30 мкМ) на рост КОЕ-Ф и их пролиферативную активность [2]. Обработку результатов проводили методом вариационной статистики с использованием t критерия Стьюдента и непараметрического U критерия Манна-Уитни.

Использование ингибитора аденилатциклазы способствовало значительному ускорению процессов регенерации. Заживление дефекта в данном случае наблюдалось к 14 сут опыта (табл.4).

В ходе гистологического исследования имело место снижение лейкоцитарной инфильтрации краев раны, дермы и нижележащих тканей и увеличение количества фибробластов в слое грануляций под влиянием ингибитора аденилатциклазы.

Таблица 4 Динамика среднего диаметра ран, в см (X±m) Сроки исследования/сутки Контроль Ингибитор аденилатциклазы 1 1,1±0,01 1,1±0,02 3 0,98±0,02 0,87±0,01* 5 0,9±0,02 0,81±0,01* 7 0,76±0,03 0,69±0,02* 9 0,57±0,01 0,52±0,03 12 0,28±0,03 0,22±0,02 13 0,20±0,02 0,09±0,01* 14 0,1±0,03 0,0±0,0 16 0,06±0,03 0,0±0,0 * - отмечена достоверность относительно контроля при p<0,05

При этом изучение механизмов регенеративного действия ингибитора аденилатциклазы выявило существенное увеличение числа КОЕ-Ф в раневой поверхности (табл.5), обусловленное его прямым влиянием на прогениторные клетки. Кроме того, внесение 2′,5′-dideoxyadenosine в культуру интактных миелокариоцитов сопровождалось значительным увеличением КОЕ-Ф в культуральной среде и количества КОЕ-Ф в S-фазе клеточного цикла (табл.6).

Таблица 5 Содержание мезенхимальных клеток-предшественников в раневой поверхности, на 2,5×105 нуклеаров, (X±m) Сроки исследования/сутки Контроль Ингибитор аденилатциклазы 3 0,55±0,15 2,3±0,15* 5 1,07±0,3 3,03±0,2* * - отмечена достоверность относительно контроля при 8<0,05

Таблица 6 Число КОЕ-Ф и КОЕ-Ф в S-фазе в культуре клеток костного мозга при добавлении ингибитора аденилатциклазы, (X±m) Группы КОЕ-Ф, на 2,5×105 миелокариоцитов КОЕ-Ф в S-фазе, в % Контроль 9,6±0,7 26,3±4,5 Ингибитор аденилатциклазы 12,56±0,59* 64,87±3,22* * - отмечена достоверность относительно контроля при p<0,05

Таким образом, модуляция внутриклеточной передачи сигнала с помощью специфического ингибитора аденилатциклазы сопровождалось значительным ускорением регенерации поверхностных тканей в результате повышения пролиферативной активности резидентных прогениторных клеток кожи.

Пример 3

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое воздействие на PKC (протеинкиназу С)

Известно стимулирующее влияние активации PKC на функциональную активность (процессы пролиферации и дифференцировки) клеточных элементов [5].

Исследование проводилось на 48 беспородных крысах. Регенераторную (терапевтическую) активность фармакологического вещества, оказывающего прямое воздействие на PKC-опосредованный сигналинг (активатора PKC), изучали на модели дегенеративного заболевания [2] - цирроза печени.

Цирроз вызывали совместным внутрижелудочным введением 50% раствора CCl4 (гепатотропный яд) на оливковом масле в дозе 2 мл/кг в течение 3-х недель 2 раза в неделю (6 раз)). При этом вместо воды животные в течение всего периода эксперимента получали 10% раствор этилового спирта. Опытным животным, начиная со следующего дня после последнего введения тетрахлоруглерода, через день в течение 10 сут внутрибрюшинно вводили активатор PKC - форболовый эфир (Phorbol12-myristate 13-acetate, Sigma, США) [11], в дозе 10 мкг/кг. Режим и доза введения вещества в предварительных экспериментах были определены как наиболее эффективные. Контрольным животным по той же схеме в эквивалентном объеме (0,5 мл) вводили дистиллированную воду.

Оценивали гибель крыс, проводили биохимические исследования содержания в сыворотке крови аспартат- и аланин-аминотрансфераз (АсАТ, АлАТ) на 40-е сутки, а также морфологическое исследование печени на 40-е сутки опыта. Активность ферментов сыворотки крови определяли общепринятыми методами, используя полуавтоматический биохимический анализатор фирмы Cormay и стандартные наборы к нему. Кровь для исследования получали из бедренной артерии через катетер. На гистологических препаратах печени, окрашенных гематоксилином и эозином, определяли количество клеток инфильтрата с помощью окулярной сетки Автандилова, содержащей 25 тест-точек [9]. В 20 полях зрения подсчитывали количество клеток, попадающих на тест-точки сетки. Относительную площадь инфильтрации высчитывали как отношение точек сетки, приходящихся на клетки инфильтрата, ко всем точкам сетки в 20 полях зрения. Площадь соединительной ткани определяли с помощью средств компьютерной обработки графических данных. Для этого на стандартной площади среза печени (последовательные микрофотографии 10 полей зрения, выполненные микровидеокамерой "Digital micro", с программой передачи изображения на компьютер фирмы «Элекард», Томск) измеряли площадь структур, окрашенных пикрофуксином, и вычисляли процентное отношение к выбранной стандартной площади. Кроме того, с помощью культуральных методов изучали влияние активатора PKC на состояние пула регионарных стволовых клеток (СК) в печени - КОЕ-Печ [2]. Обработку результатов проводили методом вариационной статистики с использованием t-критерия Стьюдента и непараметрического U-критерия Вилкоксона-Манна-Уитни.

Биохимические исследования сыворотки крови выявили повышение активности АлАТ, и АсАТ и ЩФ на 40-е сутки опыта после начала введения CCl4 в контрольной группе (табл.7). В то время как использование активатора PKC сопровождалось существенным снижением ферментативной активности сыворотки крови.

При исследовании гистологических препаратов печени в контрольной группе крыс отмечалось выраженное нарушение долькового строения органа. Имела место деформация терминальных печеночных венул, артериол и желчных протоков. Поля грануляционной ткани, замещали погибшие гепатоциты, в которых происходило новообразование сосудов и печеночных протоков, были видны фиброзные тяжи и микроузлы (псевдодоли). Последние представляли собой группы гепатоцитов, окруженных участками фиброза. В сохранившихся гепатоцитах наблюдалась выраженная крупнокапельная жировая дистрофия. Введение активатора PKC приводило к значительному регрессу морфологических признаков цирроза. При этом наблюдалось восстановление долькового строения печени, хотя признаки мелкокапельной жировой дистрофии и портальной инфильтрации сохранялись до конца периода наблюдения.

Подсчет содержания клеток инфильтрата и площади соединительной ткани показал падение данных показателей в группе крыс, получавших форболовый эфир (табл.8).

Таким образом, активатор PKC обладал выраженным противоцирротическим действием.

Таблица 7 Биохимические показатели крыс-самцов с циррозом (1) и при введении активатора PKC на фоне моделирования поражения печени (2) на 40 сутки эксперимента, X±m Группы АлАТ (мккат/л) АсАТ (мккат/л) ЩФ (Е/л) фон 0,21±0,01 0,22±0,03 229,0±23,4 1 0,7±0,03* 0,74±0,03* 514,3±23,6* 2 0,49±0,02*# 0,55±0,05*# 438,47±8,6*# * - отмечена достоверность различия показателя от его фонового значения при p≤0,05. # - отмечена достоверность различия показателя от его контрольного значения при p≤0,05.

Таблица 8 Морфологические показатели печени крыс-самцов с циррозом (1) и при введении активатора PKC на фоне моделирования поражения печени (2), X±m Группы Относительная площадь инфильтрата (%) Относительная площадь соед. Ткани (%) фон 1,26±0,3 3,51±0,28 1 25,9±4,57* 16,85±2,3* 2 18,6±1,23*# 10,25±0,7*# * - отмечена достоверность различия показателя от его фонового значения при p≤0,05. # - отмечена достоверность различия показателя от его контрольного значения при p≤0,05.

В ходе изучения механизмов терапевтического (регенеративного) действия активатора PKC было выявлено значительное возрастание числа печеночных СК в органе-мишени (табл.9).

При этом в экспериментах in vitro было показано прямое стимулирующее влияние активатора PKC на прогениторные клетки. Внесение 50 нг/мл модификатора сигнальной трансдукции в культуру клеток печени сопровождалось значительным увеличением количества КОЕ-Печ в культуральной среде (табл.10).

Таблица 9 Содержание КОЕ-Печ в печени крыс с циррозом (1) и при введении активатора PKC на фоне моделирования поражения печени (2), X±m Сроки исследования/сутки Группы КОЕ-Печ в печени, на 105 нуклеаров фон 9,63±0,35 21-е 1 4,36±0,55* 2 7,23±2,1 23-е 1 6,59±1,2* 2 14,63±0,89*# 28-е 1 13,7±0,8* 2 10,23±0,47 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05. # - отмечена достоверность различия показателя от его контрольного значения при p≤0,05.

Таблица 10 Влияние активатора PKC на рост КОЕ-Печ (2), X±m Группы КОЕ-Печ в печени, на 105 нуклеаров контроль 14,23±2,36 активатор PKC 23,55±4,7* * - отмечена достоверность различия показателя от его фонового значения при p≤0,05.

Таким образом, стимуляция PKC-зависимого сигналинга в региональных СК с помощью активатора PKC сопровождалось значительным ускорением регенерации ткани печени, пораженной патологическим процессом, характеризующимся неспособностью компенсации нарушений путем реализации собственного регенераторного потенциала.

Пример 4

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое воздействие на фосфатидилинозитол-3-киназа (PI3K)-опосредованный сигналинг, играющий важную роль в стимуляции функций прогениторных клеток [7]

Исследование проводилось на 34 беспородных крысах и 10 мышах линии CBA. Регенераторную (терапевтическую) активность фармакологического вещества, оказывающего прямое воздействие на PI3K-опосредованный сигналинг (активатор (стимулятор) PI3K), изучали на модели ишемического инсульта, вызываемого полуторной перевязкой сонных артерий у крыс [9].

В качестве фармакологического вещества, оказывающего прямое стимулирующее воздействие на PI3K-опосредованный сигналинг в прогениторных клетках, использовали низкомолекулярный алкалоид зонгорин. Вещество вводили крысам в дозе 2 мл перорально в виде 0,0005%-раствора 1 раз в сутки в течение 10 дней после моделирования патологического состояния. Режим и доза введения вещества в предварительных экспериментах были определены как наиболее эффективные. Контрольным животным по той же схеме в эквивалентном объеме вводили дистиллированную воду.

Прямое стимулирующее воздействие зонгорина на PI3K в прогениторных клетках было показано в предварительных экспетиментах путем установления факта отмены ингибитором PI3K (LY294002) («Calbiochem», США) [7] стимулирующего действия зонгорина на рост КОЕ-Н (нейральных стволовых клеток) - нейросфер (клеточных образований, получаемых из нейральных клеток-предшественников) [1, 2] в культуре клеток пара-вентрикулярной области головного мозга мышей линии CBA in vitro. Рабочая концентрация ингибитора PI3K составляла 50 мкМ (микромоль). Клетки паравентрикулярной области головного мозга культивировали в жидкой культуральной среде [2], содержащей 10 нг/мл зонгорина. Внесение в культуру клеток головного мозга ингибитора PI3K отменяло стимулирующее влияние зонгорина на рост КОЕ-Н (табл.11).

Таблица 11 Рост КОЕ-Н из клеток паравентрикулярной области головного мозга при добавлении в среду зонгорина (1) и зонгорина совместно с ингибитором PI3K (2), X±m Группы КОЕ-Н, на 105 нуклеаров фон 2,36±0,25 1 5,68±0,19* 2 2,34±0,41 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05.

Критериями терапевтической (регенераторной) активности активатора PI3K являлись результаты гистологического исследования головного мозга (на 10-е сут после моделирования ишемического инсульта), а также коррекция изменений функционального характера, вызванных перевязкой сонных артерий, которые регистрировались на основании изменения ориентировочно-исследовательского поведения животных в открытом поле и сохранности УРПИ [1, 9]. Ориентировочно-исследовательское поведение оценивали на 7, 14-е сут. Рефлекс пассивного избегания вырабатывался на 5 сут после моделирования патологического состояния, а его воспроизводимость оценивалась на 21-е сут эксперимента. Обработку результатов проводили методом вариационной статистики с использованием t критерия Стьюдента и непараметрического U критерия Манна-Уитни.

Проведенные исследования показали, что полуторная перевязка сонных артерий приводила к нарушению ориентировочно-исследовательского поведения животных в открытом поле (табл.12) и падению уровня воспроизведения УРПИ (табл.13).

При гистологическом исследовании мозга животных с ишемией наблюдалось неравномерное кровенаполнение полушарий головного мозга. Часть сосудов коры была в спавшемся состоянии, встречались сосуды со слабым кровенаполнением и, много сосудов с пустыми просветами. Имел место выраженный периваскулярный и перицеллюлярный отек. В области гиппокампа наблюдалось значительное количество нейронов с гиперхромными ядрами, вакуольной дистрофией, нейроны, окруженные фагоцитами, нейроны с пикнотичным ядром и сморщенной цитоплазмой, нейроны в состоянии фагоцитоза.

Введение активатора PI3K оказывало выраженное церебропротекторное действие. Наблюдалось повышение уровня воспроизводимости рефлекса, выраженная коррекция нарушений ориентировочно-исследовательского поведения и предотвращение гибели животных (табл.12, 13). При этом морфологическая картина головного мозга характеризовалась относительно равномерным кровенаполнением сосудов правого и левого полушария, отменой развития периваскулярного и перицеллюлярного отека и снижением количества нейронов с вакуольной дистрофией и нейронов в состоянии фагоцитоза по сравнению с контрольными животными.

Таблица 12 Влияние активатора PI3K на показатели ориентировочно-исследовательского поведения крыс в открытом поле после моделирования ишемического инсульта ( X ¯ ± m ) Сроки исследования/сутки Группы наблюдения, доза Суммарная двигательная активность Горизонтальная активность Вертикальная активность Норковый рефлекс 7-е интакт 26,8±4,53 16,2±3,8 4,2±1,4 7,3±1,5 контроль 15,1±1,78* 13,5±1,9* 1,0±0,6* 0,0±0,0* активатор PI3K 27,8±3,19# 18,2±3,68# 2,4±0,3* 6,3±1,2# 14-е интакт 13,69±2,5 9,3±1,6 2,34±0,36 3,6±0,25 контроль 21,4±2,61* 16,9±2,4* 1,3±0,9* 2,6±0,17* активатор PI3K 19,53±4,2 11,3±2,5 3,2±0,3 4,7±2,5 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05. # - отмечена достоверность различия показателя от его контрольного значения при p≤0,05.

Таблица 13 Влияние активатора PI3K на сохранность условного рефлекса пассивного избегания беспородных крыс поле после моделирования ишемического инсульта ( X ¯ ± m ) Группы наблюдения, доза Доля животных с сохранившимся рефлексом при проверке через (в %) 21 сутки интакт 92 контроль 12 активатор PI3K 65

Полученные результаты свидетельствуют о выраженной церебропротекторной активности активатора PI3K, связанной с его регенеративной активностью, определяемой стимулирующим влиянием данного вещества на нейральные стволовые клетки в результате реализации PI3K-опосредованного сигналинга.

Пример 5

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое воздействие на митоген-активируемые киназы (МАРК) и протеинкиназу В (PKB) [7, 8], играющие важную роль в сигнальной трансдукции при стимуляции функций клеток

Исследование проводилось на 58 мышах линии CBA. Регенераторную (терапевтическую) активность фармакологического вещества, оказывающего прямое воздействие на МАРК и PKB, изучали на модели постгипоксической энцефалопатии.

В качестве фармакологического вещества, оказывающего прямое активирующее воздействие на МАРК- и PKB-опосредованный сигналинг в прогениторных клетках (активатора МАРК и PKB), использовали низкомолекулярный алкалоид гипаконитин. Вещество вводили мышам в дозе 0,2 мл перорально в виде 0,0005% - раствора 1 раз в сутки в течение 7 дней после моделирования патологического состояния. Режим и доза введения вещества в предварительных экспериментах были определены как наиболее эффективные. Контрольным животным по той же схеме в эквивалентном объеме вводили дистиллированную воду.

Постгипоксическую энцефалопатию моделировали с помощью гермокамеры [1]. Функциональные нарушения со стороны центральной нервной системы, вызванные гипоксическим воздействием, оценивались по изменению ориентировочно-исследовательского поведения в открытом поле и сохранности УРПИ [1, 9]. Ориентировочно-исследовательское поведение оценивали на 7, 14, 21-е сут. Рефлекс пассивного избегания вырабатывался на 5 сут после моделирования патологического состояния, а его воспроизводимость оценивалась на 21-е сут эксперимента. Обработку результатов проводили методом вариационной статистики с использованием t критерия Стьюдента и непараметрического U критерия Манна-Уитни.

Прямое активирующее влияние гипаконитина на МАРК и PKB в прогениторных клетках было показано в предварительных экспериментах путем установления факта отмены ингибитором МАРК р38 и PKB (SB203580) (Calbiochem, США) [7] стимулирующего действия гипаконитина на рост КОЕ-Ф (мезенхимальных стволовых клеток) [2] в культуре клеток костного мозга мышей линии CBA in vitro. Рабочая концентрация ингибитора МАРК и PKB составляла 10 мкМ (микромоль). Клетки костного мозга культивировали в полувязкой культуральной среде [2], содержащей 10 нг/мл гипаконитина. Внесение в культуру клеток костного мозга ингибитора МАРК и PKB отменяло стимулирующее влияние гипаконитина на рост КОЕ-Ф и повышение их пролиферативной активности (табл.14).

Таблица 14 Рост КОЕ-Ф в культуре клеток костного мозга мышей и их пролиферативная активность при добавлении в среду гипаконитина (1) и гипаконитина совместно с ингибитором МАРК и PKB (2), X±m Группы КОЕ-Ф, на 2,5*105 миелокариоцитов КОЕ-Ф в S-фазе, в % фон 10,2±2,17 33,26±2,24 1 18,36±1,04* 68,4±3,6* 2 11,0±0,68 35,7±2,55 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05.

Проведенные исследования показали (табл.15), что перенесенная гипоксия вызывала нарушение ориентировочно-исследовательского поведения в открытом поле. В группе гипоксического контроля отмечалось увеличение латентного времени захода в темную камеру при выработке рефлекса, что свидетельствует о нарушении ориентировочного рефлекса. Применение активатора МАРК и РКВ приводило к нормализации ориентировочно-исследовательского поведения в открытом поле (табл.15).

Кроме того, проявления постгипоксической энцефалопатии у животных гипоксического контроля регистрировались по нарушению мнестических функций. Имело место падение уровня воспроизводимости УРПИ и значительная гибель животных. Применение гипаконитина оказало защитное действие на животных. Имело место повышение уровня воспроизводимости рефлекса и предотвращение гибели животных (табл.16).

Таким образом, фармакологическая активация МАРК и РКВ в прогениторных элементах, сопровождающаяся стимуляцией их функций, приводила к развитию выраженных церебропротекторных эффектов.

Таблица 15 Влияние активатора МАРК и РКВ на показатели ориентировочно-исследовательского поведения мышей линии СВА в открытом поле после гипоксии ( X ¯ ± m ) Сроки исследования/сутки Группы наблюдения, доза Суммарная двигательная активность Горизонтальная активность Вертикальная активность Норковый рефлекс 7-е интакт 35,9±7,4 32,3±3,8 4,2±1,2 4,1±0,6 контроль 35,7±3,2 29,5±2,8 1,0±0,6* 5,7±1,4 активатор МАРК и РКВ 37,48±3,7 28,4±3,22 3,4±0,3 6,3±1,2 14-е интакт 20,7±3,31 12,6±2,21 5,5±1,2 1,1±0,31 контроль 32,57±6,34 23,86±4,38* 6,43±1,99 1,29±0,42 активатор МАРК и РКВ 26,59±4,3 17,2±5,3 4,3±2,1 1,7±0,4 21-е интакт 27,5±4,3 12,7±2,2 11,4±2,1 2,2±0,88 контроль 41,5±5,4* 25,4±1,08* 12,3±1,9 2,5±1,4 активатор МАРК и РКВ 26,7±2,49# 13,6±1,98# 10,37±2,4 2,9±0,24 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05. # - отмечена достоверность различия показателя от его контрольного значения при p≤0,05.

Таблица 16 Влияние активатора МАРК и РКВ на сохранность условного рефлекса пассивного избегания мышей линии СВА в открытом поле после моделирования ишемического инсульта ( X ¯ ± m ) Группы наблюдения, доза Доля животных с сохранившимся рефлексом при проверке через (в %) 21 сутки интакт 90 контроль 24 активатор МАРК и РКВ 72

Пример 6

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое стимулирующее воздействие на NF-κB (ядерный фактор «каппа-би»)-сигналинг, играющий важную роль в сигнальной трансдукции в прогениторных клетках при стимуляции их пролиферации и дифференцировки [5, 8]

Исследование проводилось на 36 мышах линии СВА. Регенераторную (терапевтическую) активность фармакологического вещества, оказывающего прямое воздействие на NF-κB, изучали на модели системы крови в условиях цитостатической миелосупрессии.

В качестве фармакологического вещества, оказывающего прямое стимулирующее воздействие на NF-κB (активатора NF-κB) в прогениторных клетках, использовали низкомолекулярный алкалоид мезаконитин. Вещество вводили мышам в дозе 0,2 мл перорально в виде 0,0005%-раствора 1 раз в сутки в течение 5 дней после моделирования патологического состояния. Режим и доза введения вещества в предварительных экспериментах были определены как наиболее эффективные. Контрольным животным по той же схеме в эквивалентном объеме вводили дистиллированную воду.

Цитостатическую миелосупрессию моделировали путем однократного внутрибрюшинного введения раствора 5-фторурацила (5-ФУ) в ½ максимально переносимой дозы (МПД) (114 мг/кг). На 5, 8-е и 12-е сут после введения цитостатика животных умерщвляли путем ингаляции CO2. У опытных и контрольных мышей общепринятыми методами определяли содержание ретикулоцитов в периферической крови, а также показатели костномозгового кроветворения (общее количество миелокариоцитов, миелограмма). Содержание коммитированных клеток-предшественников эритропоэза (КОЕ-Э) и гранулоцитопоэза (КОЕ-ГМ) в костном мозге и индекс их дифференцировки [9]. Статистическую обработку полученных данных проводили методом вариационной статистики с использованием t-критерия Стьюдента и Уилкоксона-Манна-Уитни.

Прямое активирующее влияние мезаконитина на NF-κB-сигналинг в прогениторных клетках, было показано в предварительных экспетиментах путем установления факта отмены ингибитором активности NF-κB ауротиомалатом (Calbiochem, США) [5] стимулирующего действия мезаконитина на рост КОЕ-Э и КОЕ-ГМ [9] в культуре клеток костного мозга мышей линии CBA in vitro и их пролиферативную активность. Рабочая концентрация ингибитора NF-κB составляла 50 мкМ (микромоль). Клетки костного мозга культивировали в полувязкой культуральной среде [2], содержащей 10 нг/мл мезаконитина. Внесение в культуру клеток костного мозга ингибитора NF-κB отменяло стимулирующее влияние мезаконитина на рост КОЕ-Э и КОЕ-ГМ и их пролиферативную активность (табл.17).

Таблица 17 Влияние мезаконитина (1) и мезаконитина совместно с ингибитором NF-κB (2) на рост КОЕ-Э, КОЕ-ГМ в культуре клеток костного мозга мышей и их пролиферативную активность, X±m Группы КОЕ-Э, на 105 миелокариоцитов КОЕ-Э в S-фазе, в % КОЕ-ГМ, на 105 миелокариоцитов КОЕ-ГМ в S-фазе, в % фон 6,52±0,39 12,32±1,7 8,72±1,3 19,63±2,4 1 9,86±1,0* 38,4±2,3* 18,7±2,4* 44,8±3,51* 2 6,74±0,28 14,36±2,8 9,31±1,47 18,79±2,56 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05.

В ходе эксперимента введение 5-ФУ проводило к развитию глубокой продолжительной депрессии эритроидного и гранулоцитарного ростков кроветворения. На протяжении всего сроки исследования отмечалось падение содержания эритрокариоцитов, незрелых и зрелых нейтрофильных гранулоцитов в гемопоэтической ткани (табл.18) и количества нейтрофилов в периферической крови (табл.19). Вместе с тем имела место выраженная компенсаторная реакция со стороны пула кроветворных предшественников. Регистрировалось возрастание числа костномозговых КОЕ-Э и КОЕ-ГМ на фоне увеличения интенсивности их дифференцировки (табл.20).

Таблица 18 Показатели костномозгового кроветворения у мышей линии СВА после введения 5-фторурацила (1) и активатора NF-κB в условиях моделирования цитостатической миелосупрессии (2), ×106/бедро (X±m) Сроки исследования, сутки Незрелые нейтрофильные гранулоциты Зрелые нейтрофильные гранулоциты Эритроидные клетки Фон 1,2±0,08 2,99±0,31 2,59±0,35 5-е 1 0,08±0,03* 0,01±0,01 0,16±0,07* 2 0,26±0,06* 0,06±0,01# 0,43±0,09*# 8-е 1 0,92±0,14 0,43±0,06 0,62±0,11* 2 1,49±0,18*# 1,18±0,1# 1,3±0,15*# 12-е 1 1,67±0,31 3,37±0,27 2,08±0,16 2 1,95±0,27 4,22±0,15*# 2,97±0,24# * - отмечена достоверность различий показателей с интактным контролем при p<0,05 # - отмечена достоверность различий показателей с цитостатическим контролем при p<0,05

Введение активатора NF-κB приводило к значительному повышению интенсивности восстановления процессов гемопоэза. Наблюдалось увеличение содержания морфологически распознаваемых клеток в костном мозге, сопровождаемое возрастанием числа ретикулоцитов, палочко- и сегментоядерных нейтрофилов в периферической крови (табл.18, 19). Причем указанные изменения явились закономерным следствием повышения функциональной активности КОЕ-Э и КОЕ-ГМ и увеличения их содержания в гемопоэтической ткани (табл.20).

Таблица 19 Показатели периферической крови мышей линии СВА после введения 5-фторурацила (1) и активатора NF-κB в условиях моделирования цитостатической миелосупрессии (2), (X±m) Сроки исследования, сутки Палочкоядерные нейтрофилы, Г/л Сегментоядерные нейтрофилы, Г/л Ретикулоциты, в промилях Фон 0,09±0,03 1,63±0,12 12,56±2,4 5-е 1 0±0* 0,03±0,01* 28,5±1,57* 2 0,02±0,01*# 0,02±0,02* 39,4±2,3*# 8-е 1 0,03±0,01* 0,16±0,04* 37,47±3,55* 2 0,09±0,02# 0,6±0,1*# 49,4±2,1*# 12-е 1 0,17±0,04 1,96±0,29 17,6±3,6 2 0,31±0,08* 2,83±0,27*# 22,17±2,6* *- отмечена достоверность различий показателей с интактным контролем при p<0,05 # - отмечена достоверность различий показателей с цитостатическим контролем при p<0,05

Таблица 20 Динамика содержания КОЕ-Э и КОЕ-ГМ в костном мозге мышей линии СВА и индекс их дифференцировки (ИД) после введения 5-фторурацила (1) и активатора NF-κB в условиях моделирования цитостатической миелосупрессии (2), (X±m) Сроки исследования, сутки КОЕ-Э, на 105 миелокариоцитов КОЕ-ГМ, на 105 миелокариоцитов ИДКОЕ-Э, в усл. ед ИДКОЕ-ГМ, в усл. ед Фон 10,0±0,42 2,5±0,27 3,22±0,21 2,08±0,16 5-е 1 1,5±0,19* 1,38±0,18* 4,0±0,46 1,81±0,13 2 4,38±0,38 *# 4,0±0,33*# 6,63±0,53*# 2,56±0,2# 8-е 1 9,0±0,71 4,88±0,3* 2,51±0,16* 2,53±0,45 2 8,25±0,59* 7,88±0,4*# 2,15±0,26* 2,9±0,32* 12-е 1 14,38±1,64* 4,13±0,61* 4,0±0,22* 2,73±0,45 2 12,88±0,72* 2,75±0,16 3,07±0,37# 2,27±0,25 * - отмечена достоверность различий показателей с интактным контролем при p<0,05 # - отмечена достоверность различий показателей с цитостатическим контролем при p<0,05

Полученные результаты свидетельствуют о выраженной стимуляции регенерации кроветворной ткани под влиянием активатора NF-κB, играющего важную роль во внутриклеточной сигнальной трансдукции процессов пролиферации и дифференцировки кроветворных прекурсоров.

Пример 7

Изучение регенераторной (терапевтической) активности фармакологического вещества, оказывающего прямое стимулирующее воздействие на JAK (Janus kinase или just another kinase)/STAT (signal transducer and activator of transcription)-сигналинг, играющий важную роль в сигнальной трансдукции в прогениторных клетках при стимуляции их функций, в том числе различными цитокинами [8]

Исследование проводилось на 36 мышах линии СВА. Регенераторную (терапевтическую) активность фармакологического вещества, оказывающего прямое воздействие на NF-κB, изучали на модели сахарного диабета.

В качестве фармакологического вещества, оказывающего прямое стимулирующее воздействие на JAK/STAT-сигналинг (активатор JAK и STAT) в прогениторных клетках, использовали низкомолекулярный алкалоид напеллин. Вещество вводили мышам в дозе 0,2 мл перорально в виде 0,0005%-раствора 1 раз в сутки в течение 3 дней после моделирования патологического состояния. Режим и доза введения вещества в предварительных экспериментах были определены как наиболее эффективные. Контрольным животным по той же схеме в эквивалентном объеме вводили дистиллированную воду.

Экспериментальной моделью сахарного диабета служил аллоксановый диабет [12]. У мышей диабет моделировали подкожным введением 1-водного аллоксана по следующей схеме: в течение 4-х дней ежедневно по 300 мг/кг, затем еще раз в той же дозе на 7-й день после последнего введения в объеме 0,2 мл/мышь.

Оценку состояния эндокринного аппарата поджелудочной железы животных производили по регистрации уровня глюкозы в периферической крови и с помощью морфологического исследовании органа. Содержание глюкозы определяли утром натощак на 11-е и 21-е сут опыта с помощью глюкометра «Optilite» (Венгрия) и прилагаемых к нему полосок «Optilite test strip». Для морфологического исследования на 8, 12, 21-е сут эксперимента часть поджелудочной железы, прилегающую к селезенке, фиксировали в 10% растворе формалина и заливали в парафин. Депарафинизированные срезы толщиной 5 мкм окрашивали гематоксилином и эозином. На срезах определяли площадь 10-ти последовательных островков Лангерганса методом графического компьютерного анализа и подсчитывали в них общее количество клеток, число пикнотизированных клеточных элементов и вычисляли содержание клеток на единицу площади островка и процент пикнотизированных клеток. С целью исследования механизма действия средства изучали динамику содержания регионарных стволовых клеток в поджелудочной железе (КОЕпж) на 8, 12, 21-е сут [12]. Обработку результатов проводили методом вариационной статистики с использованием t-критерия Стьюдента и непараметрического U-критерия Вилкоксона-Манна-Уитни.

Прямое активирующее влияние напеллина на JAK/STAT-сигналинг (JAK и STAT) в прогениторных клетках, было показано в предварительных экспетиментах путем установления факта отмены ингибиторами активности JAK и STAT Ruxolkinib (Pan JAK Inhibitor) (InvivoGen, США) и 6-Nitrobenzo[b]thiophene-1,1-dioxide, STAT3 Inhibitor V, Stattic (Calbiochem, США) стимулирующего действия напеллина на рост КОЕпж [9, 12] в культуре клеток поджелудочной железы мышей линии CBA in vitro и их пролиферативную активность. Рабочая концентрация ингибиторов JAK и STAT составляла 1000 нМ (наномоль) и 50 мкМ соответственно. Клетки поджелудочной железы культивировали в жидкой культуральной среде [9, 12], содержащей 10 нг/мл напелллина. Внесение в культуру клеток костного мозга каждого из ингибиторов JAK и STAT отдельно значительно снижало стимулирующее влияние напеллина на рост КОЕпж и их пролиферативную активность, а их совместное использование сопровождалось полной отменой способности алкалоида активировать клетки-предшественники (табл.21).

Таблица 21 Влияние напеллина (1), напеллина совместно с ингибитором JAK (2), напеллина совместно с ингибитором STAT (3) и напеллина совместно с ингибиторами JAK и STAT (3) на рост КОЕпж в культуре клеток поджелудочной железы мышей и их пролиферативную активность, X±m Группы КОЕпж, на 105 нуклеаров КОЕпж в S-фазе, в % фон 12,37±1,5 8,3±0,44 1 27,86±3,72* 47,3±1,63* 2 18,9±2,41* 20,47±0,58* 3 15,7±1,12 15,36±0,94* 4 11,17±0,25 10,3±0,19 * - отмечена достоверность различия показателя от его фонового значения при p≤0,05.

В ходе эксперимента введение аллоксана приводило к пикнозу значительной части клеток островков Лангерганса, наблюдаемому во все сроки исследования. Кроме того, отмечались выраженные явления отека и гиперемии эндокринного аппарата с развитием значительной лимфомакрофагальной инфильтрации ткани (табл.22). Закономерным отражением морфологических изменений со стороны поджелудочной железы явилось значительное возрастание содержания глюкозы в периферической крови и развитие гипергликемии (табл.23)

При этом курсовое введение активатора JAK и STAT после моделирования аллоксанового диабета приводило к достоверному снижению процента пикнотизированных клеток в островках Лангерганса на фоне уменьшения общего количества клеток на единицу площади островка в результате значительного снижения инфильтрации островков (табл.22). Описанная патоморфологическая картина сопровождалась нормализацией уровня глюкозы в крови (табл.23)

Таблица 22 Динамика содержания пикнотизированных клеток в островке Лангерганса в % (А) и общее количество клеток на единицу площади островка (Б), (X±m) Сроки исследования (сутки) Контроль (аллоксановый диабет) Активатор JAK и STAT А Б A Б интакт 3,88±0,23 0,75±0,04 3,88±0,23 0,75±0,04 8-е 16,18±0,89* 0,75±0,03 14,3±0,7* 0,73±0,04 12-е 14,35±0,94* 0,77±0,03 10,21±0,3*# 0,56±0,02# 21-е 11,8±1,07* 0,9±0,07 9,7±0,27* 0,67±0,1# * - отмечена достоверность относительно интактных животных при p<0,05 # - отмечена достоверность относительно животных с аллоксановым диабетом при p<0,05

Таблица 23 Уровень содержания глюкозы в периферической крови, ммоль/л (X±m) Сроки исследования (сутки) Контроль (аллоксановый диабет) Активатор JAK и STAT интакт 3,42±0,37 11-е 15,68±1,22* 8,97±0,74*# 21-е 14,34±1,59* 6,33±1,18*# * - отмечена достоверность относительно интактных животных при p<0,05 # - отмечена достоверность относительно животных с аллоксановым диабетом при p<0,05

При исследовании механизмов действия выявленной высокой эффективности активатора JAK и STAT при экспериментальной терапии сахарного диабета было обнаружено, что в контрольной группе отмечалось выраженное падение содержания регионарных стволовых клеток в поджелудочной железе, в то время как у опытных мышей имело место значительное возрастание количества КОЕпж (табл.24).

Таблица 24 Динамика содержания регионарных стволовых клеток в поджелудочной железе мышей (на 105 нуклеаров) (В), (X±m) Сроки исследования Контроль Активатор JAK и STAT интакт 8,74±1,3 8-е 4,36±0,58* 8,55±1,6 12-е 6,57±0,32 14,32±0,47*# 21-е 4,33±0,47* 10,7±0,82# * - отмечена достоверность относительно интактных животных при p<0,05 # - отмечена достоверность относительно животных с аллоксановым диабетом при p<0,05

Таким образом, введение активатора JAK и STAT позволяет проводить эффективную терапию сахарного диабета путем стимуляции эндогенных стволовых клеток, сопровождаемой репарацией инсулинпродуцирующего аппарата органа и нормализацией уровня глюкозы в периферической крови.

В целом, представленные данные свидетельствуют о высокой эффективности стимуляции регенерации тканей, пораженных патологическими процессами, с помощью различных фармакологических веществ, стимулирующих функции прогениторных клеток за счет прямого воздействия на ключевые звенья внутриклеточной сигнальной трансдукции. При этом выявленные феномены могут послужить основой разработки в рамках предлагаемой нами принципиально новой концепции решения задач регенеративной медицины «Стратегии фармакологической регуляции внутриклеточной сигнальной трансдукции в прогениторных клетках», новых лекарственных средств, «мишенью» действия которых будут являться отдельные звенья (молекулы, вторичные мессенджеры) внутриклеточных путей передачи сигнала в прогениторных клетках различных классов.

Литература

1. Гольдберг Е.Д., Дыгай A.M., Зюзьков Г.Н. Гипоксия и система крови. - Томск: Изд-во Том. ун-та, 2006. - 142 с.

2. Дыгай A.M., Зюзьков Г.Н., Жданов В.В. и др. Методические рекомендации по изучению специфической активности средств для регенеративной медицины // Руководство по проведению доклинических исследований новых лекарственных средств. Часть первая / Под ред. А.Н. Миронова. - М.: Гриф и К, 2013. - С.776-787 (944 с.).

3. Дыгай A.M., Зюзьков Г.Н. Фундаментальные аспекты перспективы использования нанотехнологичных модификаторов функций стволовых клеток в регенеративной медицине // Нанотехнологии и охрана здоровья. - 2012. - Том IV. - №2 (11). - С.30-38.

4. Дыгай A.M., Артамонов А.В, Бекарев А.А., Жданов В.В., Зюзьков Г.Н., Мадонов П.Г., Удут В.В. Нанотехнологии в фармакологии. - М.: Издательство РАМН, 2011. - 136 с.

5. Зюзьков Г.Н., Данилец М.Г., Лигачева А.А. и др. Роль NF-kB-зависимого сигналинга в реализации ростового потенциала мезенхимальных клеток-предшественников в условиях in vitro // Бюл. эксперим. биол. и медицины. - 013. - №5. - С.682-684.

6. Зюзьков Г.Н., Жданов В.В., Данилец М.Г. и др. Участие цАМФ- и IKK-2-зависимых сигнальных путей в реализации ростового потенциала мезенхимальных прогениторных клеток // Бюл. эксперим. биол. и медицины. - 2013.- №8. - С.195-198.

7. Зюзьков Г.Н., Данилец М.Г., Лигачева А.А. и др. Участие PI3K, МАРК ERK1/2 и p38 в реализации ростового потенциала мезенхимальных клеток-предшественников в условиях in vitro // Клеточные технологии в биологии и медицине. - 2013. - №4. - С.206-209.

8. Новик А.А., Камилова Т.А., Цыган В.Н. Введение в молекулярную биологию канцерогенеза / Учебное пособие. - 2004, Изд-во «ГЭОТАР-МЕД». - 224 с.

9. Руководство по проведению доклинических исследований новых лекарственных средств. Часть первая / Под ред. А.Н. Миронова. - М.: Гриф и К, 2013. - 944 с.

10. Ситдикова Г.Ф. Газообразные посредники как эндогенные модуляторы освобождения медиатора в нервно-мышечном синапсе / Автореферат диссертации на соискание ученой степени доктора биологических наук по специальности 03.00.13 - физиология, Казань, 2008. - 46 с.

11. Александрова А.Ю. Реорганизация актинового цитоскелета, лежащая в основе движения клеток Автореферат диссертации на соискание ученой степени доктора биологических наук по специальности 03.03.04 - Клеточная биология, цитология, гистология, Москва, 2011 - 42 с.

12. Гольдберг Е.Д., Дыгай A.M., Зюзьков Г.Н. и др. Патент (RU) на изобретение №2313361 «Средство, обладающее антидиабетической активностью», 2007 г. (опубл. 27.12.2007., Бюл. №36).

Похожие патенты RU2599289C2

название год авторы номер документа
Способ стимуляции выработки гранулоцитарного колониестимулирующего фактора клетками костного мозга in vitro 2017
  • Зюзьков Глеб Николаевич
  • Мирошниченко Лариса Аркадьевна
  • Удут Елена Владимировна
  • Симанина Елена Владислововна
  • Полякова Татьяна Юрьевна
  • Ставрова Лариса Александровна
  • Мирошниченко Андрей Григорьевич
  • Жданов Вадим Вадимович
RU2665818C1
СПОСОБ СТИМУЛЯЦИИ ВЫРАБОТКИ ЭРИТРОПОЭТИНА В КУЛЬТУРЕ КЛЕТОК in vitro 2015
  • Дыгай Александр Михайлович
  • Жданов Вадим Вадимович
  • Зюзьков Глеб Николаевич
  • Мирошниченко Лариса Аркадьевна
  • Удут Елена Владимировна
  • Хричкова Татьяна Юрьевна
  • Симанина Елена Владиславовна
  • Шерстобоев Евгений Юрьевич
  • Агафонов Владимир Иванович
  • Бурмина Яна Вадимовна
  • Минакова Мария Юрьевна
RU2589288C1
Гемопротекторное средство 2019
  • Зюзьков Глеб Николаевич
  • Мирошниченко Лариса Аркадьевна
  • Полякова Татьяна Юрьевна
  • Симанина Елена Владиславовна
  • Ставрова Лариса Александровна
  • Жданов Вадим Вадимович
RU2725135C1
СПОСОБ ИНДУКЦИИ НАПРАВЛЕННОЙ ДИФФЕРЕНЦИРОВКИ МУЛЬТИПОТЕНТНЫХ ПРОГЕНИТОРНЫХ КЛЕТОК ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ В ИНСУЛИН-ПРОДУЦИРУЮЩИЕ β-КЛЕТКИ ПРИ САХАРНОМ ДИАБЕТЕ 2014
  • Дыгай Александр Михайлович
  • Скурихин Евгений Германович
  • Резцова Алена Михайловна
  • Ермакова Наталия Николаевна
  • Першина Ольга Викторовна
  • Хмелевская Екатерина Сергеевна
  • Крупин Вячеслав Андреевич
  • Комарова Светлана Викторовна
RU2579997C2
ГЕМОСТИМУЛЯТОР 1994
  • Гольдберг Е.Д.
  • Дыгай А.М.
  • Жданов В.В.
  • Хлусов И.А.
  • Любавина П.А.
  • Гольдберг В.Е.
  • Новицкий Е.В.
  • Литвиненко В.И.
  • Попова Т.П.
RU2088249C1
Способ стимуляции выработки эритропоэтина клетками костного мозга in vitro 2016
  • Зюзьков Глеб Николаевич
  • Жданов Вадим Вадимович
  • Удут Елена Владимировна
  • Мирошниченко Лариса Аркадьевна
  • Симанина Елена Владислововна
  • Полякова Татьяна Юрьевна
  • Чайковский Александр Васильевич
  • Ставрова Лариса Александровна
RU2628882C1
СРЕДСТВО, ОБЛАДАЮЩЕЕ РЕГЕНЕРАТИВНОЙ АКТИВНОСТЬЮ 2012
  • Зюзьков Глеб Николаевич
  • Поветьева Татьяна Николаевна
  • Семенов Аркадий Алексеевич
  • Жданов Вадим Вадимович
  • Суслов Николай Иннокентьевич
  • Крапивин Александр Владимирович
  • Нестерова Юлия Владимировна
  • Фомина Татьяна Ивановна
  • Дыгай Александр Михайлович
RU2475260C1
Средство, стимулирующее функции мезенхимальных клеток-предшественников in vitro 2018
  • Зюзьков Глеб Николаевич
  • Полякова Татьяна Юрьевна
  • Удут Елена Владимировна
  • Мирошниченко Лариса Аркадьевна
  • Симанина Елена Владиславовна
  • Ставрова Лариса Александровна
  • Просекин Георгий Андреевич
  • Жданов Вадим Вадимович
RU2686718C1
СРЕДСТВО, ОБЛАДАЮЩЕЕ РАНОЗАЖИВЛЯЮЩЕЙ АКТИВНОСТЬЮ 2012
  • Зюзьков Глеб Николаевич
  • Поветьева Татьяна Николаевна
  • Семенов Аркадий Алексеевич
  • Жданов Вадим Вадимович
  • Суслов Николай Иннокентьевич
  • Нестерова Юлия Владимировна
  • Удут Елена Владимировна
  • Мирошниченко Лариса Аркадьевна
  • Крапивин Александр Владимирович
  • Фомина Татьяна Ивановна
  • Дыгай Александр Михайлович
RU2481836C1
СПОСОБ ТЕРАПИИ ЭКСПЕРИМЕНТАЛЬНОГО ХРОНИЧЕСКОГО ТОКСИЧЕСКОГО ГЕПАТИТА 2009
  • Дыгай Александр Михайлович
  • Зюзьков Глеб Николаевич
  • Жданов Вадим Вадимович
RU2392000C1

Реферат патента 2016 года СРЕДСТВА, СТИМУЛИРУЮЩИЕ РЕГЕНЕРАЦИЮ ТКАНЕЙ

Изобретение относится к медицине, конкретно к фармакологии, клеточным технологиям и регенеративной медицине. Задачей, решаемой настоящим изобретением, является расширение арсенала эффективных средств, стимулирующих регенерацию тканей. Поставленная задача достигается применением в качестве средств, стимулирующих регенерацию тканей, фармакологических веществ, оказывающих прямое действие на PI3K-, PKB-, PKC-, NF-κВ-, MAPK-, JAK/STAT, цАМФ-, PKA/CREB-опосредованный сигналинг в прогениторных клетках. Предлагаемые средства позволяют эффективно стимулировать регенерацию тканей, пораженных патологическим процессом, за счет активации функций резидентных (регионарных) прогениторных клеток путем воздействия на внутриклеточную сигнальную трансдукцию. 7 з.п. ф-лы, 24 табл., 7 пр.

Формула изобретения RU 2 599 289 C2

1. Применение фармакологического вещества, оказывающего прямое действие на сигнальную молекулу PI3K, или РКВ, или РКС, или NF-κВ, или МАРК-, или JAK и STAT, или цАМФ, или РКА и CREB внутриклеточной сигнальной трансдукции в эндогенных прогениторных клетках тканей организма, в качестве средства, стимулирующего регенерацию тканей.

2. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют ингибитор протеинкиназы А (РКА) N-2-(p-bromocinnamyl-amino)-ethyl-5-isoquinolihe sulfon-amide dihydrochloride в качестве средства, стимулирующего регенерацию повреждений кожи.

3. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют ингибитор аденилатциклазы 2′,5′-dideoxyadenosine в качестве средства, стимулирующего регенерацию повреждений кожи.

4. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют активатор протеинкиназы С (РКС) Phorbol12-myristate 13-acetate в качестве средства, стимулирующего регенерацию печени при циррозе.

5. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют активатор фосфатидилинозитол-3-киназы (PI3K) алкалоид зонгорин в качестве средства, стимулирующего регенерацию ткани головного мозга при ишемическом инсульте.

6. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют активатор митоген-активируемых протеинкиназ (МАРК) и протеинкиназы В (РКВ) алкалоид гипаконитин в качестве средства, стимулирующего регенерацию ткани головного мозга при постгипоксической энцефалопатии.

7. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют активатор ядерного фактора «каппа-би» (NF-κВ) алкалоид мезаконитин в качестве средства, стимулирующего регенерацию кроветворной ткани при цитостатической миелосупрессии.

8. Применение фармакологического вещества по п. 1, отличающееся тем, что в качестве фармакологического вещества используют активатор Янус киназы (JAK) и белков семейства сигнальных трансдукторов и активаторов транскрипции (STAT) алкалоид напеллин в качестве средства, стимулирующего регенерацию эндокринного (островкового) аппарата поджелудочной железы при сахарном диабете.

Документы, цитированные в отчете о поиске Патент 2016 года RU2599289C2

KERPEDJIEVA SS et al
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Stem Cells Dev
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
НAM O et al
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1

RU 2 599 289 C2

Авторы

Зюзьков Глеб Николаевич

Жданов Вадим Вадимович

Данилец Марина Григорьевна

Мирошниченко Лариса Аркадьевна

Удут Елена Владимировна

Дыгай Александр Михайлович

Даты

2016-10-10Публикация

2013-12-20Подача