СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ХРОМОМОЛИБДЕНОВОЙ СТАЛИ Российский патент 2016 года по МПК C21D1/25 

Описание патента на изобретение RU2599465C2

Изобретение относится к области металлургии, а именно к способу термической обработки изделий из малоуглеродистой хромомолибденовой стали и может быть использовано, в частности, для упрочнения труб нефтяного сортамента, например, насосно-компрессорных и обсадных.

Известен способ термической обработки труб из малоуглеродистой хромомолибденовой стали для обеспечения коррозионной стойкости труб и соединительных деталей в средах, содержащих H2S и СО2, по схеме двойного цикла, включающего двойную закалку с отпуском:

- первый нагрев до Ас3-(Ас3+50)°С, охлаждение в воде, второй нагрев в межкритический интервал температур (Ac1-Ас3), охлаждение в воде и нагрев под отпуск до (550+Ac1)°C с последующим охлаждением на воздухе [пат. РФ №2096495, опубл. 20.11.1997];

- закалка при нагреве в аустенитную область температур выше Ас3 с выдержкой и последующим охлаждением водой, закалка при нагреве в ферритно-аустенитную область температур в интервале (Ac1+80)-(Ас3-30)°С с выдержкой и последующим охлаждением водой и высокий отпуск при температуре (500-Ас1)°С с выдержкой и последующим охлаждением на воздухе [пат. РФ №2148660, опубл. 10.05.2000];

- первая закалка (920-940)+10°С, вторая закалка 800-830°С и отпуск 600-620°С [Труды XVI Международной научно-технической конференции «ТРУБЫ-2008», г. Челябинск].

Недостатком способа является то, что он не позволяет получить высокий уровень прочностных свойств (предел текучести не более 570 МПа) и имеет низкую производительность процесса из-за проведения второго нагрева в межкритический интервал температур (Ac1-Ас3) ферритно-аустенитной области, что ведет к повышению себестоимости готовой продукции.

Также известна сталь, содержащая углерод 0,1-0,35 масс. %, хром 1,0-6,0 масс. % и молибден 0,4-1,0 масс. %, имеющая предел текучести предел текучести не менее 552 МПа и способ термической обработки по схеме: нормализация и двойной отпуск (пат. РФ №2368836, опубл. 27.09.2008).

Недостатком данного способа термической обработки является ограниченное применение в зависимости от содержания хрома в диапазоне 1,0-6,0 масс. %. В частности способ не применим для обработки труб нефтяного сортамента из хромомолибденовой стали с содержанием хрома до 2,0 масс. %, так как не позволяет обеспечить достаточный запас по прочностным свойствам и коррозионной стойкости. Кроме того, цикличность термической обработки, заключающаяся в проведении двойного отпуска, снижает производительность процесса в целом.

Наиболее близким по технической сущности является известный способ термической обработки изделий из комплексно-легированной стали (заявка №2013137543, дата подачи 09.08.2013 г, заявитель ОАО «СинТЗ»), включающий нагрев до температуры Ас3-(Ас3+50)°С, охлаждение водой в спрейере до температуры не более 280°С по длине трубы, и отпуск до температуры не более (Ac1-15)°С.

Недостатком способа является низкая стойкость изделия против коррозии при эксплуатации в средах, содержащих сероводород и углекислый газ в виду неполных структурных превращений при закалке. Кроме того, применительно к низкоуглеродистой стали низкая температура нагрева под закалку Ас3-(Ас3+50)°С и недостаточно полное охлаждение водой не позволяют обеспечить высокий уровень прочностных свойств.

Технической задачей, на решение которой направлено заявляемое изобретение, является разработка способа термической обработки изделий из малоуглеродистой хромомолибденовой стали, в частности, труб для нефтяных скважин, обеспечивающего коррозионную стойкость в агрессивных средах, содержащих сероводород в соответствии с международным стандартом API Spec 5CT/ISO 11961 и углекислый газ, и высокий уровень прочностных свойств (предел текучести от 552 до 800 МПа).

Указанный результат достигается тем, что изделие, изготовленное из хромомолибденовой стали и подвергнутое термической обработке, включающей закалку и отпуск, нагревают под аустенитизацию до температуры Ас3+(5080)°С, выдерживают не менее 30 минут, охлаждают в воде до температуры не более 100°С и нагревают под отпуск до температуры не более (Ac1-15)°С с выдержкой не менее 30 минут.

Технический результат, обеспечиваемый за счет выбранных температурных и временных параметров термической обработки, определяется следующими факторами:

- нагрев под аустенитизацию до температуры Ас3+(50…80)°С применительно к низкоуглеродистой хромомолибденовой стали обеспечивает полное аустенитное превращение и начало охлаждения в воде с температуры не ниже, чем Ar3, что является необходимым условием достижения высокопрочного состояния, исключая образование ферритно-перлитной структуры, а формирование мелкодисперсной однородной микроструктуры - стойкости против сероводородного растрескивания. Кроме того, измельчение аустенитного зерна до размера не крупнее 8 балла, а следовательно, и размеров упрочняющей фазы - эффективный способ повышения сопротивления хрупкому разрушению, в том числе при отрицательных температурах эксплуатации изделия;

- температура конца охлаждения в воде установлена не более 100°С, что ниже температурной области мартенситного превращения, обеспечивает максимальную степень превращения переохлажденного аустенита. В случае завершения охлаждения при более высоких температурах, свыше 100 С, возможно выделение крупных карбидов по границам зерен, что снижает сопротивление металла межкристаллитному хрупкому разрушению;

- максимальная температура нагрева под отпуск ограничивается величиной (Ac1-15)°С, так как в условиях массового производства (поточной линии термической обработки) проведение отпуска в субкритическом интервале температур опасно, с точки зрения, гарантированного отсутствия перегрева стали выше, чем температура обратного фазового превращения Ас1;

- применительно к хромомолибденовой стали требуется проведение высокотемпературного отпуска с выдержкой не менее 30 минут для реализации таких процессов как релаксация структурных напряжений, гомогенизация химического состава, карбидные превращения с выделением специальных карбидов хрома и молибдена.

Предлагаемый и известный способы термической обработки были опробованы в условиях Синарского трубного завода при изготовлении труб размером 73,02×5,51 мм. Результаты промышленного изготовления труб в сравнении с прототипом приведены в таблице 1.

Для применяемых хромомолибденовых составов стали термическая обработка труб проводилась в печах с шагающим подом с точностью ведения процесса ±5°С при следующих параметрах: температура нагрева под аустенитизацию 890°С, температура конца охлаждения в воде 50-80°С и отпуск 650-680°С с выдержкой 60 минут. Далее была проведена оценка механических свойств, включая ударную вязкость при температуре испытания минус 60°С и коррозионной стойкости в среде, содержащей сероводород согласно стандарту NACE ТМ0177 и углекислый газ с применением специализированной автоклавной установки, приближающей условия испытания к реальным эксплуатационным в нефтяных скважинах коррозионного фонда.

Таким образом, предлагаемый способ термической обработки позволяет изготавливать изделия, в частности трубы, из низкоуглеродистой хромомолибденовой стали с получением высокого уровня прочностных свойств и ударной вязкости, а также в сравнении с прототипом обеспечить их коррозионную стойкость.

Похожие патенты RU2599465C2

название год авторы номер документа
Труба коррозионно-стойкая из низкоуглеродистой доперитектической стали для нефтегазопроводов и способ её производства 2017
  • Трутнев Николай Владимирович
  • Лоханов Дмитрий Валерьевич
  • Неклюдов Илья Васильевич
  • Мозговой Антон Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Корнев Юрий Леонидович
  • Никляев Андрей Викторович
  • Чубуков Михаил Юрьевич
  • Морозов Вадим Валерьевич
RU2647201C1
Труба высокопрочная из низкоуглеродистой доперитектической молибденсодержащей стали для нефтегазопроводов и способ её производства 2017
  • Трутнев Николай Владимирович
  • Лоханов Дмитрий Валерьевич
  • Неклюдов Илья Васильевич
  • Мозговой Антон Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Корнев Юрий Леонидович
  • Морозов Вадим Валерьевич
  • Никляев Андрей Викторович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
RU2658515C1
Бесшовная высокопрочная труба из стали мартенситного класса для обсадных колонн и способ ее производства 2021
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Чикалов Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Неклюдов Илья Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2787205C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ КОМПЛЕКСНО-ЛЕГИРОВАННОЙ СТАЛИ 2013
  • Пономарев Николай Георгиевич
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Суворов Александр Вадимович
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
RU2564196C2
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА ДЛЯ ОБСАДНЫХ КОЛОНН И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2022
  • Пумпянский Дмитрий Александрович
  • Чикалов Сергей Геннадьевич
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Буняшин Михаил Васильевич
  • Ульянов Андрей Георгиевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Лоханов Дмитрий Валерьевич
  • Благовещенский Сергей Иванович
  • Никляев Андрей Викторович
  • Пышминцев Игорь Юрьевич
  • Выдрин Александр Владимирович
  • Черных Иван Николаевич
  • Корсаков Андрей Александрович
RU2798642C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ БЕСШОВНЫХ КОРРОЗИОННОСТОЙКИХ ТРУБ НЕФТЯНОГО СОРТАМЕНТА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА 2021
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Лоханов Дмитрий Валерьевич
  • Буняшин Михаил Васильевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2788887C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПРОКАТА ИЗ МАЛОУГЛЕРОДИСТОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 1999
  • Тишков В.Я.
  • Чурюлин В.А.
  • Дьяконова В.С.
  • Демидова А.А.
  • Попова Т.Н.
  • Квасникова О.О.
  • Рослякова Н.Е.
  • Зикеев В.Н.
  • Клыпин Б.А.
  • Корнющенкова Ю.В.
RU2148660C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВКИ ИЗ ВЫСОКОПРОЧНОЙ ИЗНОСОСТОЙКОЙ СТАЛИ (ВАРИАНТЫ) 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
RU2750299C2
СПОСОБ КОМПЛЕКСНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛИ 2011
  • Сильман Григорий Ильич
  • Серпик Людмила Григорьевна
  • Федосюк Александр Александрович
RU2503726C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ ТРУБ 2011
  • Белов Евгений Викторович
  • Ефимов Иван Васильевич
  • Пейганович Надежда Валерьевна
  • Силин Денис Анатольевич
RU2484149C1

Реферат патента 2016 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ХРОМОМОЛИБДЕНОВОЙ СТАЛИ

Изобретение относится к области металлургии, а именно к способу термической обработки изделий из малоуглеродистой хромомолибденовой стали и может быть использовано для упрочнения труб нефтяного сортамента, например, насосно-компрессорных и обсадных. Для получения изделий с высокой коррозионной стойкостью в агрессивных средах, содержащих сероводород в соответствии с международным стандартом API Spec 5CT/ISO 11961 и углекислый газ, и высоким уровнем прочностных свойств (предел текучести от 552 до 800 МПа), изделие подвергают термической обработке, включающей нагрев под аустенитизацию до температуры Ас3+(50…80)°С с выдержкой не менее 30 минут, охлаждение в воде до температуры не более 100°С и нагрев под отпуск до температуры не более (Ac1-15)°С с выдержкой не менее 30 минут. 1 табл.

Формула изобретения RU 2 599 465 C2

Способ термической обработки изделий из малоуглеродистой хромомолибденовой стали, включающий аустенитизацию, охлаждение в воде и отпуск, отличающийся тем, что осуществляют нагрев под аустенитизацию до температуры Ас3+(50-80)°C с выдержкой не менее 30 минут, охлаждение в воде осуществляют до температуры не более 100°C, а нагрев под отпуск ведут до температуры не более (Ac1-15)°C с выдержкой не менее 30 минут.

Документы, цитированные в отчете о поиске Патент 2016 года RU2599465C2

ТРУБА ИЗ МАРТЕНСИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ ДЛЯ НЕФТЯНЫХ СКВАЖИН 2004
  • Амая Хисаси
  • Кондо Кунио
  • Уеда Масакацу
RU2363877C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВАЛКА ПРОФИЛЕГИБОЧНОГО АГРЕГАТА 2001
  • Барабанцев Г.Е.
  • Тюляпин А.Н.
  • Колобов А.В.
  • Кузнецов В.В.
  • Черноусов В.Л.
  • Трайно А.И.
  • Юсупов В.С.
RU2203333C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1997
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Марченко Л.Г.
  • Поповцев Ю.А.
  • Шепелев А.В.
  • Тетюева Т.В.
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
RU2112050C1
ТРУБНАЯ ЗАГОТОВКА ИЗ ХРОМОМОЛИБДЕНСОДЕРЖАЩЕЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2333969C1
JP 09025518 A, 28.01.1997.

RU 2 599 465 C2

Авторы

Ильичев Андрей Вячеславович

Овчинников Дмитрий Владимирович

Тихонцева Надежда Тахировна

Жукова Светлана Юльевна

Лефлер Михаил Ноехович

Софрыгина Ольга Андреевна

Корчагина Ирина Викторовна

Даты

2016-10-10Публикация

2015-03-11Подача