СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ Российский патент 1998 года по МПК C21D8/10 C21D9/08 

Описание патента на изобретение RU2112050C1

Изобретение относится к металлургии стали и может быть использовано при изготовлении труб нефтяного сортамента высоких групп прочности, стойких к сульфидному растрескиванию из низколегированных сталей, содержащих хром, молибден и ванадий.

Известен способ термической обработки изделий из малоуглеродистых марганцовистых сталей, заключающийся в том, что изделие с прокатного нагрева охлаждают по выходу из последней клети стана с температур 830-870oС путем воздействия на их наружную поверхность водой в течение 0,15-0,30 с с интенсивностью 6,0-7,0 л/с на каждый миллиметр толщины стенки [1].

Способ используют при термической обработке труб нефтяного сортамента для обеспечения требуемых механических свойств групп прочности К и Е по ГОСТ 633-80.

Недостатком данного способа является то, что трубы, термически обработанные по этому способу, обладают низкой стойкостью к сульфидному растрескиванию, в связи с чем их нельзя применять на месторождениях даже с низким содержанием сероводорода.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ термической обработки труб из малоуглеродистых марганцовистых сталей, включающий охлаждение на воздухе с температур конца прокатки, нагрев до 760-790oС с охлаждением в воде до цеховой температуры и дополнительный нагрев до 670-700oС с охлаждением на воздухе [2].

Данный способ повышает стойкость труб к сульфидному растрескиванию под напряжением в средах, содержащих природный и бактериальный сероводород.

Однако, как показала практика, известный способ пригоден только для получения труб с пределом текучести 379-552 Н/мм (группы прочности - G-55 по АPI-5СТ, Дс по ТУ 14-161-150). Для получения труб более высоких групп прочности с пределом текучести 552-758 Н/мм (группы прочности L-80, С-90, С-95 Т-95 по АРI-5СТ, группы прочности Кс, Ес по ТУ 14-161-150) используются стали, легированные сильными карбидообразующими элементами. В этом случае повышается устойчивость стали к отпуску, и дополнительный нагрев до температур 670-700oС (без выдержки) при регламентировании предельных значений предела текучести не позволил достичь требуемого разупрочнения и, соответственно, необходимой стойкости к сульфидному растрескиванию.

Задачей изобретения является разработка способа термической обработки труб нефтяного сортамента, который расширяет ассортимент используемых сталей и достигаемых групп прочности и обеспечивает в изделиях из них дальнейшее повышение стойкости к сульфидному растрескиванию при более высоком уровне прочности, что ведет к повышению эксплуатационной надежности этих труб.

Поставленная задача достигается тем, что в способе термической обработки труб, включающем охлаждение на воздухе с температуры конца прокатки, нагрев до заданной температуры, охлаждение в воде, повторный нагрев до заданной температуры с последующим охлаждением на воздухе, нагрев ведут до 760-810oС, повторный нагрев до 630-720oС, затем осуществляют дополнительный повторный нагрев до 630-720oС, выдержку и охлаждение на воздухе.

Данный способ дает возможность использовать для производства труб нефтяного сортамента, стойких к сульфидному растрескиванию, различные по химическому составу стали, экономно легированные одним или несколькими карбидообразующими элементами: молибденом до 0,25%; хромом до 1,10% и ванадием до 0,30%. Увеличение верхней границы температуры нагрева перед охлаждением в воде на 20oС в данном способе по сравнению с прототипом вызвано с введением в сталь легирующих добавок. Осуществление в способе первого дополнительного нагрева до 630-720oС (без выдержки) с охлаждением на воздухе в стали, легированной одним или несколькими из указанных элементов, ведет к выделению коалесценции и сфероидизации карбида железа FeC и выделению дисперсных специальных карбидов Cr C, Мо С и V С. При этом устойчивость сталей против отпуска повышается, значения предела текучести превышают допустимые, и не достигается требуемая стойкость против сульфидного растрескивания. Повторный дополнительный нагрев до 630-720oС с выдержкой 10-30 мин с охлаждением на воздухе проводят при температурах выше температур максимального дисперсионного твердения, которые составляют, o С: Cr C 500; Мо С 575; V C 625. Это приводит к коалесценции и сфероидизации специальных карбидов. Конечный эффект получается положительный: прочностные характеристики укладываются в требуемый диапазон значений, и существенно повышается стойкость к сульфидному растрескиванию, т.е. обеспечивается решение поставленной в изобретении задачи.

Предлагаемый способ термической обработки труб осуществляется следующим образом.

Трубы-заготовки нагревают под заключительную прокатку до температуры, определяемой по известной методике, в зависимости от содержания в металле углерода и легирующих элементов она колеблется в пределах 850-970oС. При выходе из последней клети стана трубы имеют температуру 800-880oС. С этой температуры изделия охлаждают на воздухе до цеховой температуры, затем осуществляют нагрев до 760-810oС с охлаждением в воде. Увеличение верхней границы температуры нагрева перед охлаждением в воде на 20oС по сравнению с прототипом вызвано с введением в сталь легирующих добавок. Повышение температуры нагрева сверх 810oС ведет к увеличению количества мартенсита, что в сталях, легированных элементами, повышающими прокаливаемость, приводит к опасности появления закалочных трещин.

После охлаждения в воде ведут первый дополнительный нагрев до 630-720oС (без выдержки) с охлаждением на воздухе. И, наконец, ведут повторный дополнительный нагрев до 630-720oС с выдержкой 10-30 мин с охлаждением до цеховой температуры на воздухе.

Способ был опробован в промышленных условиях ОАО "Синарский трубный завод" и дал следующие результаты, приведенные в таблице. Из таблицы видны высокие результаты, относящиеся к задаче изобретения по сравнению с прототипом, получены прочностные характеристики металла труб на 1-2 группы прочности выше, а также более высокая стойкость к сульфидному растрескиванию.

Таким образом, решена задача получения труб нефтяного сортамента c высокой прочностью, стойких к сульфидному растрескиванию и с повышенной эксплуатационной надежностью.

Похожие патенты RU2112050C1

название год авторы номер документа
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1996
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Марченко Л.Г.
  • Поповцев Ю.А.
  • Шепелев А.В.
  • Галиченко В.П.
  • Медведев А.П.
  • Мухин М.Ю.
  • Тетюева Т.В.
RU2085596C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ 1997
  • Бодров Ю.В.
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Жуков А.И.
  • Марченко Л.Г.
  • Поповцев Ю.А.
  • Шепелев А.В.
  • Тетюева Т.В.
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
RU2110588C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТОЙ СТАЛИ 1998
  • Брижан А.И.(Ru)
  • Грехов А.И.(Ru)
  • Жукова С.Ю.(Ru)
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.(Ru)
  • Орлов В.А.(Ru)
  • Поповцев Ю.А.(Ru)
  • Тетюева Т.В.(Ru)
  • Усов В.А.(Ru)
  • Шепелев А.В.(Ru)
RU2131933C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2003
  • Брижан А.И.
  • Бодров Ю.В.
  • Грехов А.И.
  • Горожанин П.Ю.
  • Жукова С.Ю.
  • Мурзин В.Н.
  • Рыбинский Н.Ф.
  • Лефлер М.Н.
  • Пышминцев И.Ю.
  • Кривошеева Антонина Андреевна
  • Крылатков С.И.
RU2230802C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТОЙ СТАЛИ 1998
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева А.А.
  • Марченко Л.Г.
  • Медведев А.П.
  • Мухин М.Ю.
  • Поповцев Ю.А.
  • Тетюева Т.В.
  • Усов В.А.
RU2132396C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ ИЗ МАЛОУГЛЕРОДИСТЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ 1994
  • Артамошкин Сергей Владимирович[Ru]
  • Тетюева Тамара Викторовна[Ru]
  • Брижан Анатолий Илларионович[Ru]
  • Марченко Леонид Григорьевич[Ru]
  • Поповцев Юрий Александрович[Ru]
  • Жукова Светлана Юльевна[Ru]
  • Кривошеева Антонина Андреевна[Ua]
  • Кузьмичев Евгений Михайлович[Ua]
  • Усов Владимир Антонович[Ru]
RU2048542C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1996
  • Галиченко Е.Н.
  • Медведев А.П.
  • Тетюева Т.В.
  • Лаптев В.А.
  • Дегай А.С.
  • Григорьев А.Г.
  • Давыдов В.Я.
  • Меньщикова Р.Н.
  • Губин Ю.Г.
  • Катюшкин В.Г.
RU2086670C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ КОМПЛЕКСНО-ЛЕГИРОВАННОЙ СТАЛИ 2013
  • Пономарев Николай Георгиевич
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Суворов Александр Вадимович
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
RU2564196C2
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Харлашин Александр Николаевич
RU2719212C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1996
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
  • Тетюева Т.В.
  • Лаптев В.А.
  • Дегай А.С.
  • Григорьев А.Г.
  • Давыдов В.Я.
  • Меньшикова Р.Н.
  • Меньшикова Р.Н.
  • Губин Ю.Г.
  • Катюшкин В.Г.
RU2096495C1

Иллюстрации к изобретению RU 2 112 050 C1

Реферат патента 1998 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ

Назначение: металлургия стали, преимущественно термическая обработка труб нефтяного сортамента высоких групп прочности, стойких к сульфидному растрескиванию из низколегированных сталей, содержащих хром, молибден и ванадий. Сущность изобретения: в способе термической обработки труб, включающем охлаждение на воздухе с температуры конца прокатки, нагрев до заданной температуры, охлаждение в воде, повторный нагрев до заданной температуры с последующим охлаждением на воздухе, нагрев ведут до 760 - 810oC, повторный нагрев до 630-720oС, затем осуществляют дополнительный повторный нагрев до 630 - 720oС, выдержку и охлаждение на воздухе. Данный способ повышает стойкость труб к сульфидному растрескиванию под напряжением в средах, содержащих природный и бактериальный сероводород. 1 табл.

Формула изобретения RU 2 112 050 C1

Способ термической обработки труб, включающий охлаждение на воздухе с температуры конца прокатки, нагрев до заданной температуры, охлаждение в воде, повторный нагрев до заданной температуры с последующим охлаждением на воздухе, отличающийся тем, что нагрев ведут до 760 - 810oС, повторный нагрев до 630 - 720oС, затем осуществляют дополнительный повторный нагрев до 630 - 720oС, выдержку и охлаждение на воздухе.

Документы, цитированные в отчете о поиске Патент 1998 года RU2112050C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
RU, патент, 2007470, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
RU, патент, 2048542, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 112 050 C1

Авторы

Брижан А.И.

Грехов А.И.

Жукова С.Ю.

Марченко Л.Г.

Поповцев Ю.А.

Шепелев А.В.

Тетюева Т.В.

Прохоров Н.Н.

Галиченко Е.Н.

Медведев А.П.

Даты

1998-05-27Публикация

1997-03-12Подача