СПОСОБ АВТОКОМПЕНСАЦИИ НЕЗАВИСЯЩИХ ОТ УСКОРЕНИЯ ДРЕЙФОВ ГИРОСКОПИЧЕСКОГО УСТРОЙСТВА Российский патент 2016 года по МПК G01C19/00 

Описание патента на изобретение RU2603767C1

Описание изобретения

Назначение и область применения

Изобретение относится к области прецизионного приборостроения и может быть использовано при создании и эксплуатации навигационных систем на базе гироскопических устройств, например, гироскопов или датчиков угловых скоростей, в морской, воздушной, наземной, скважинной навигации, в том числе, предназначенных для исследования траекторий нефтяных, газовых, геотермальных, железорудных и других скважин.

Предшествующий уровень техники

Известны различные способы автокомпенсации не зависящих от ускорения дрейфов (корпусных дрейфов) гироскопического устройства (ГУ), обеспечивающие повышение его точности при использовании (см. книгу "Автокомпенсация инструментальных погрешностей гиросистем", авторы С.М.Зельдович и др. Изд. "Судостроение", 1976 г., УДК 531382, [1]).

Сущность любого способа автокомпенсации состоит в придании отдельным элементам и узлам гироскопического устройства дополнительных механических движений, позволяющих осуществить модуляцию уходов гироприборов и, в конечном итоге, превратить эти уходы из монотонных в периодические функции времени с ограниченной амплитудой. К этим способам, в частности, относятся: принудительное движение шарикоподшипниковых опор подвесов гироскопических устройств, например, гироскопов, принудительное вращение гироскопических чувствительных элементов, реверсирование векторов кинетических моментов гироскопов и т.д.

Однако собственное движение объекта вокруг оси, параллельной оси автокомпенсации, накладывается на вышесказанное принудительное движение гироскопического устройства (например, гироскопа), что приводит к снижению эффективности работы автокомпенсации, и, как следствие, к увеличению погрешности хранения заданного направления из-за того, что не происходит полной модуляции дрейфов.

Наиболее близким к заявленному решению по совокупности существенных признаков, выбранным в качестве прототипа, является способ автокомпенсации принудительным вращением карданова подвеса ГУ на основе гироскопа вокруг вектора кинетического момента, раскрытый в вышеупомянутой публикации [1, стр. 52]. В соответствии с решением, раскрытым в прототипе, способ автокомпенсации корпусных дрейфов, входящих в состав навигационной системы, установленной на объекте, ГУ, установленном вместе с триадой акселерометров на поворотной рамке, снабженной двигателем и датчиком угла, таким образом, что ось вращения рамки параллельна вектору кинетического момента ГУ, основан на принудительном вращении подвеса ГУ вокруг вектора кинетического момента. При этом при реализации указанного способа, основание, на котором закреплены подшипники наружного кольца подвеса ГУ на основе трехстепенного гироскопа, вращается при помощи двигателя, с постоянной угловой скоростью вокруг оси, параллельной исходной ориентации вектора кинетического момента гироскопа. Таким образом, корпус ГУ разворачивают в дискретные моменты времени вокруг оси, параллельной вектору кинетического момента ГУ, с помощью поворотной рамки, связанной с двигателем, с дискретной фиксацией положений.

Основной недостаток данного решения заключается в том, что в рамках его осуществления не учитывается движение объекта вокруг его центра масс, и, как следствие, при наличии такого движения не происходит полной модуляции корпусных дрейфов ГУ( гироскопа) вплоть до полного ее прекращения (явление резонанса). Как следствие, указанный способ не позволяет исключить полностью влияние корпусных дрейфов ГУ на погрешность хранения базового направления, где в качестве базовых направлений обычно принимаются направления на географический или магнитный север, но также могут служить направление вдоль дуги большого круга, соединяющего начальную и конечную точки маршрута, направление бомбометания от исходной точки до цели или произвольные горизонтальные направления, образующие навигационную систему координат, например, в полярных областях.

Сущность изобретения.

Техническая задача, решаемая настоящим изобретением, заключается в предложении способа автокомпенсации не зависящих от ускорения дрейфов (корпусных дрейфов) гироскопического устройства (ГУ), обеспечивающего модуляцию весовых коэффициентов, определяющих влияние этих дрейфов на погрешность хранения заданного направления, в процессе работы навигационной системы на подвижном объекте.

Технический результат, достигаемый заявленным изобретением, заключается в повышении точности навигационной системы за счет снижения влияния корпусных дрейфов ГУ на погрешность хранения базового направления, независимо от закона движения объекта

Заявленный технический результат достигается тем, что используют способ автокомпенсации корпусных дрейфов ГУ, установленного вместе с триадой акселерометров на поворотной рамке, снабженной двигателем и датчиком угла, таким образом, что ось вращения рамки параллельна вектору кинетического момента ГУ, заключающийся в том, что с помощью рамки, связанной с двигателем, корпус ГУ разворачивают в дискретные моменты времени вокруг оси, параллельной вектору кинетического момента ГУ, с дискретной фиксацией положений. При этом способ согласно изобретению отличается от прототипа тем, что используют автокомпенсацию с обратной связью, при которой программно-аппаратным образом осуществляют непрерывное отслеживание уровня подавления корпусных дрейфов, для оценки которого используют текущее значение расчетного интегрального параметра N, определяемого путем математической обработки выходных сигналов гироскопа, показаний датчика угла и акселерометров, а принудительный разворот рамки вокруг оси, параллельной оси кинетического момента на текущий расчетный поправочный угол поворота рамки β i+1, с обеспечением возможности компенсации корпусных дрейфов гироскопа, осуществляют при достижении или превышении текущим значением расчетного интегрального параметра N предустановленного порога Nmax, определяемого как отношение среднеквадратичного отклонения (СКО) максимальной допустимой погрешности хранения направления σAmax, вызванной корпусными дрейфами, к СКО неопределенности этих дрейфов στ, причем значение интегрального параметра N в каждый момент времени определяют путем математической обработки по формуле:

Ν = K τ x 2 + K τ y 2 ,

где K τ x и K τ y - весовые коэффициенты, зависящие от угловых параметров движения объекта, определяемые путем математической обработки выходных сигналов гироскопа, показаний датчика угла (ДУ) и/или акселерометров по формулам

{ K τ x ( t ) = 0 t sin ( Ψ ( t ) + β ( t ) ) sin θ ( t ) d t K τ y ( t ) = 0 t cos ( Ψ ( t ) + β ( t ) ) sin θ ( t ) d t ,

где θ и Ψ - углы ориентации между корпусом объекта и горизонтной системой координат, β - угол между ГУ и корпусом объекта,

а текущий поправочный угол поворота рамки β i + 1 определяют в момент времени, когда N≥ N max путем математической обработки выходных сигналов гироскопа, показаний ДУ и/или акселерометров по формулам из следующей системы уравнений:

{ sin β i + 1 = sin β i K 1 + cos β i K 2 N ( t i ) ( K τ x ( t i ) K τ x ( t k ) ) 2 + ( K τ y ( t i ) K τ y ( t k ) ) 2 cos β i + 1 = cos β i K 1 sin β i K 2 N ( t i ) ( K τ x ( t i ) K τ x ( t k ) ) 2 + ( K τ y ( t i ) K τ y ( t k ) ) 2 , (*)

где параметры К1 и К2:

{ K 1 = K τ y ( t i ) K τ y ( t k ) + K τ x ( t i ) K τ x ( t k ) ( N ( t i ) ) 2 K 2 = K τ y ( t i ) K τ x ( t k ) K τ x ( t i ) K τ y ( t k ) , а ( N ( t i ) ) = ( K τ x ( t i ) ) 2 + ( K τ y ( t i ) ) 2 -

при этом t i - момент времени вычисления текущего поправочного угла β i + 1 , когда условие N ≥ Nmax стало истиной, β i - текущее значение угла между ГУ и корпусом объекта,

t i 1 - момент времени установки рамки в положение β i .

t k - момент времени наблюдения за движением объекта, удовлетворяющий следующему условию: t i 1 < t k < t i ,

а Nmax= σAmax/ στ.

При этом длительность интервала времени между принудительными разворотами рамки вокруг оси, параллельной вектору кинетического момента на текущий поправочный угол поворота рамки β i+1, зависящий от угловых параметров движения объекта, может быть определена на основании текущего значения весовых коэффициентов K τ x и K τ y и интегрального параметра N, а также соотношения N с предустановленным пороговым значением N max .

В одном из вариантов осуществления изобретения в качестве ГУ используют двухосный ДУС (датчик угловых скоростей), установленный на рамке так, чтобы ось его кинетического момента была параллельна оси вращения рамки.

В еще одном варианте изобретения, в качестве ГУ используют два одноосных ДУС, оси чувствительности каждого из которых ортогональны оси вращения рамки и друг другу.

Краткое описание чертежей

Для того чтобы лучше продемонстрировать отличительные особенности изобретения, в качестве примера, не имеющего какого-либо ограничительного характера, ниже описан один из вариантов осуществления, проиллюстрированный на:

Фиг. 1 - система координат, где ENh - горизонтная система координат, XkYkZk - система координат, связанная с объектом, XpYpZp - система координат, связанная с рамкой;

Фиг. 2 - вариант осуществления ГУ на основе двухосного ДУС.

Следует отметить, что прилагаемые чертежи иллюстрируют только один из наиболее предпочтительных вариантов выполнения изобретения и не могут рассматриваться в качестве ограничений его содержания, которое включает другие варианты осуществления.

Осуществимость изобретения

В качестве примера осуществления решения согласно заявленному изобретения, рассмотрим способ автокомпенсации корпусных дрейфов ГУ на примере гироскопического инклинометра на основе двухосного ДУС, используемого в качестве ГУ. При этом в рассматриваемом примере осуществления гироскопический инклинометр рассматривается в качестве объекта, на который установлен ДУС (см. фиг.2). В данной схеме осуществления изобретения, представленной на фиг.2, акселерометры 2 и ДУС 1 расположены на вращающейся рамке 3. Рамка 3 имеет возможность устанавливаться в дискретные положения относительно продольной оси гироскопического инклинометра 6 с помощью двигателя 4. Для измерения угла поворота на оси рамки размещен датчик 5 угла (ДУ), например, оптический. ДУС 1 установлен так, чтобы оси чувствительности были перпендикулярны оси вращения рамки 3. В состав как рассматриваемого ГУ, так и ГУ в любом ином исполнении, как правило, также входят блок сервисных электронных устройств и блок обработки информации, включающий, по меньшей мере, вычислитель, реализованный на базе микропроцессора (на фиг.2 не показаны), связанные по линиям связи, например телеметрической связи, с внешним или встроенным пультом управления и компьютерным устройством (на чертежах не показаны).

Блок сервисных электронных устройств, как правило, включает, по меньшей мере блок питания, блок управления, усилители и аналого-цифровые преобразователи сигналов с чувствительных элементов ГУ, акселерометров и датчика угла, текущие данных которых непрерывно передаются в блок обработки информации(вычислитель) для их последующей обработки программно-аппаратным образом и выработки управляющих сигналов на соответствующие элементу ГУ для коррекции их положения. При наличии внешних пульта управления и компьютерного устройства текущие данные от чувствительных элементов ГУ, акселерометров и датчика угла могут передаваться по каналам телеметрической связи и/или любой иной проводной или беспроводной связи, известной в данной области техники, в соответствующие им блоки обработки информации для ее преобразования, обработки по предустановленным алгоритмам и выработки управляющих сигналов и команд на ГУ, в зависимости от решаемых задач.

Согласно изобретению, при осуществлении способа автокомпенсации не зависящего от дрейфа корпуса гироскопического устройства, в качестве погрешности хранения базового направления принимают погрешность азимута ∆А, вызванную корпусными дрейфами ГУ (в примере осуществления - ДУС). Обозначив дрейфы ГУ τ x и τ y , углы между корпусом объекта и горизонтной системой координат - θ , Ψ , а угол между ГУ и корпусом объекта - β , погрешность азимута ∆А может быть определена следующим образом:

Δ A = 0 t τ x sin ( Ψ + β ) sin θ d t 0 t τ y cos ( Ψ + β ) sin θ d t (1).

Учитывая, что скорости изменения уходов(дрейфов) τx, τy представляют собой медленно меняющиеся функции времени по сравнению с другими сомножителями выражения (1), они могут быть вынесены за знаки интегралов, а оставшиеся интегральные выражения обозначены как весовые коэффициенты K τ x и K τ y соответственно. Тогда погрешность азимута ∆А можно представить в виде следующего выражения:

Δ A = τ x K τ x τ y K τ y (2).

При этом, принимая во внимание, что закон изменения углов ориентации θ и Ψ , входящих в подынтегральные выражения, в общем случае произвольный, определяемый из следующих известных соотношений:

ψ + β = a r c t g a x a y ; θ = arcsin a x 2 + a y 2 a z , где a x , a y , a z - выходные сигналы акселерометров, β - выход датчика угла (угол между ГУ и корпусом объекта), очевидно, что при реализации способа автокомпенсации корпусных дрейфов ГУ согласно прототипу значения весовых коэффициентов K τ x и K τ y будут расти во времени, так как собственное движение прибора (определяемое значением угла ψ) складывается с принудительным движением рамки (определяемое значением угла β ), при этом, очевидным образом, не происходит полной модуляции дрейфов, и, как следствие, погрешность азимута возрастает. Таким образом, решение способа автокомпенсации корпусных дрейфов ГУ, раскрытое в прототипе, позволяет обеспечить модуляцию корпусных дрейфов ГУ в погрешности азимута только в случае соблюдения условия: θ = c onst и Ψ = c o n s t .

Как было указано ранее, технической результат, достигаемый заявленным изобретением, заключается в повышении точности навигационной системы ГУ за счет модуляции весовых коэффициентов, определяющих степень влияния корпусных дрейфов ГУ на погрешность хранения базового направления, независимо от движения объекта.

В заявленном изобретении, автокомпенсация корпусных дрейфов ГУ обеспечивается за счет проведения разворотов ГУ в дискретные моменты времени вокруг вектора кинетического момента. При этом значение угла, в который при помощи двигателя и датчика угла выполняется разворот рамки ГУ, определяют на основании текущих значений углов ориентации объекта, входящих в выражение погрешности азимута (1).

Анализ зависимости (1) показывает, что для уменьшения погрешности азимута ∆А необходимо уменьшать значения каждого из весовых коэффициентов K τ x и K τ y , входящих в зависимость, определенную формулой (1). При этом из чертежей, представленных на фиг. 1 и 2, следует, что при помощи двигателя 4 возможно управление только углом между ГУ и корпусом объекта β . При установке (развороте) рамки ГУ в определенные положения, можно добиться поддержания значений весовых коэффициентов K τ x и K τ y в пределах, не превышающих заданного заранее установленного значения, при достижении которого производится разворот рамки на такой расчетный угол β , который вызывает смену знака подынтегральных выражений, поэтому оба интеграла, определяющих зависимости весовых коэффициентов K τ x и K τ y , становятся из растущих функций убывающими. Таким образом, весовые коэффициенты K τ x и K τ y из неограниченно растущих со временем становятся ограниченными по величине независимо от закона движения, определяемого углами θ и Ψ .

Таким образом, управляя углом β , можно добиться минимизации интегральных коэффициентов, а в пределе, их обнуления. Снижая тем самым влияние корпусных дрейфов ГУ на погрешность хранения базового направления.

Для суммарной оценки вклада весовых коэффициентов K τ x и K τ y в погрешность азимута, на основании вышеизложенного, может быть определен расчетный интегральный параметр N, следующим образом:

Ν = K τ x 2 + K τ y 2 (3).

Выражение (3) для интегрального расчетного параметра N получено на основании известного в уроне техники предположения, что неопределенности дрейфов τ x и τ y являются случайными некоррелированными константами с равными дисперсиями среднеквадратичного отклонения (СКО) σ τ :

σ A 2 = σ τ 2 K τ x 2 + σ τ 2 K τ y 2 , то есть σ A = σ τ N , где σА - СКО погрешности хранения базового направления, вызванной корпусными дрейфами.

Следовательно, для ограничения величины СКО погрешности хранения базового направления достаточно ограничить значение интегрального параметра N выбранным пороговым значением N max , определяемым из соотношения σ A max = σ τ N max , где σ A max - максимальное допустимое значение СКО погрешности хранения базового направления, вызванное корпусными дрейфами ГУ.

Соответственно, пороговое значение расчетного интегрального параметра N max может быть определено как:

N max = σ A max / σ τ , тогда, очевидно, что при N < N max справедливо и σ A < σ A max .

В общем случае, пороговое значение N max предпочтительно выбирают из совокупности следующих условий: техническая реализуемость и малость прогнозируемой ошибки угла азимута.

Таким образом, если в момент времени t i выполняется условие N N max , для изменения знаков интегралов, ГУ относительно объекта необходимо установить в положение β i + 1 . С учетом вышеизложенного, весовые коэффициенты для момента времени t i + 1 ( t i + 1 - момент времени, когда будет выполнено условие K τ x = 0 и K τ y = 0 ) могут быть определены следующим образом:

{ K τ x ( t i + 1 ) = K τ x ( t i ) + t i t i + 1 sin Ψ ( t ) cos β i + 1 + cos Ψ ( t ) sin β i + 1 sin θ ( t ) d t K τ y ( t i + 1 ) = K τ y ( t i ) + t i t i + 1 cos Ψ ( t ) cos β i + 1 sin Ψ ( t ) sin β i + 1 sin θ ( t ) d t (4).

Введя следующие обозначения:

I s = t i t i + 1 sin Ψ ( t ) sin θ ( t ) d t I c = t i t i + 1 cos Ψ ( t ) sin θ ( t ) d t (5).

Приравняв нулю весовые коэффициенты на момент времени t i + 1 , получим следующую систему уравнений, с учетом принятых в (5) обозначений:

{ K τ x ( t i + 1 ) = K τ x ( t i ) + I s cos β i + 1 + I c sin β i + 1 = 0 K τ y ( t i + 1 ) = K τ y ( t i ) + I c cos β i + 1 I s sin β i + 1 = 0 (6).

Решение системы уравнений относительно sin β i + 1 и cos β i + 1 позволяет получить следующую систему зависимостей:

{ sin β i + 1 = K τ y ( t i ) I s K τ x ( t i ) I c I s 2 + I c 2 cos β i + 1 = K τ x ( t i ) I s K τ y ( t i ) I c I s 2 + I c 2 (7).

При этом выполнение следующего условия для указанного в делителе выражения:

I s 2 + I c 2 = ( K τ x ( t i ) ) 2 + ( K τ y ( t i ) ) 2 = ( N ( t i ) ) 2

обеспечивает минимальное время, за которое весовые коэффициенты K τ x и K τ y достигнут нуля.

Поскольку, при t i + 1 t i 1 < < t r (где t r - время работы навигационной системы ГУ, t i 1 - момент времени, когда ГУ относительно объекта был установлен в положение β i ) закон изменения углов ориентации, а как следствие и закон изменения K τ x ( t ) и K τ y ( t ) можно считать неизменным. Тогда, выбрав интервал наблюдения от t k до t i ( t i 1 < t k < t i ), система уравнений для весовых коэффициентов может быть представлена следующим образом:

{ K τ x ( t i ) = K τ x ( t k ) + t k t i sin Ψ ( t ) cos β i + cos Ψ ( t ) sin β i sin θ ( t ) d t K τ y ( t i ) = K τ y ( t k ) + t k t i cos Ψ ( t ) cos β i sin Ψ ( t ) sin β i sin θ ( t ) d t (8).

Введя следующие обозначения:

{ f s = t k t i sin Ψ ( t ) sin θ ( t ) d t = cos β i ( K τ x ( t i ) K τ x ( t k ) ) sin β i ( K τ y ( t i ) K τ y ( t k ) ) f c = t k t i cos Ψ ( t ) sin θ ( t ) d t = sin β i ( K τ x ( t i ) K τ x ( t k ) ) + cos β i ( K τ y ( t i ) K τ y ( t k ) ) (9).

и определив условия для выполнения нормировки следующим образом:

I s = k f s , I c = k f c (10).

где k 2 = ( K τ x ( t i ) ) 2 + ( K τ y ( t i ) ) 2 f s 2 + f c 2 = ( N ( t i ) ) 2 f s 2 + f c 2 (11),

при последующей подстановке (10) в (7) получим следующие выражения для тригонометрических функций угла β i + 1 , в который необходимо установить рамку:

{ sin β i + 1 = sin β i K 1 + cos β i K 2 N ( t i ) ( K τ x ( t i ) K τ x ( t k ) ) 2 + ( K τ y ( t i ) K τ y ( t k ) ) 2 cos β i + 1 = cos β i K 1 sin β i K 2 N ( t i ) ( K τ x ( t i ) K τ x ( t k ) ) 2 + ( K τ y ( t i ) K τ y ( t k ) ) 2 , (12)

где параметры K1 и К2 определяют из следующих соотношений:

K 1 = K τ y ( t i ) K τ y ( t k ) + K τ x ( t i ) K τ x ( t k ) ( N ( t i ) ) 2 K 2 = K τ y ( t i ) K τ x ( t k ) K τ x ( t i ) K τ y ( t k ) (13).

Таким образом, полученная зависимость для расчета угла β i + 1 позволяет реализовать способ автокомпенсации корпусных дрейфов гироскопа с обратной связью с осуществляемым постоянным отслеживанием текущего, уже достигнутого уровня компенсации данных дрейфов, в котором момент времени, когда необходимо выполнить разворот и угол, в который необходимо установить рамку, зависят от угловых параметров движения прибора.

Осуществление способа происходит следующим образом.

Если выполняется условие N < Nmax , то ГУ относительно корпуса объекта неподвижен. При N ≥ Nmax из уравнений (12) вычисляется значение угла, в который необходимо установить ГУ относительно корпуса объекта. После выполнения этой операции ГУ разворачивается в это положение вокруг оси параллельной оси кинетического момента. Поскольку независимо от положения рамки, вычисление N продолжается, можно наблюдать уменьшение этого параметра со временем (до 0 в данном случае), а затем - его рост. При достижении условия N N max   вновь происходит новый расчет значения угла, в который необходимо установить ГУ, и осуществляется следующий разворот рамки из текущего положения. Далее цикл повторяется. Поскольку интегральный параметр N осуществляет непрерывное отслеживание уже достигнутого уровня компенсации корпусных дрейфов ГУ, вырабатываемые при этом оценки позволяют рассчитать угол, на который необходимо развернуть рамку при достижении порогового значения, что позволяет ограничить погрешность выработки азимута, вызванную корпусными дрейфами ГУ в режиме постоянного наблюдения, независимо от закона движения объекта.

Необходимо отметить, что все вычисления осуществляются на основании объективно получаемых измерений датчика угла, акселерометров и ГУ, которые передаются в режиме реального времени на наземный пульт управления и обрабатываются персональным компьютером или аналогичными устройствами, связанным с наземным пультом управления с выработкой на основании вычислений и передачей управляющих сигналов на гироскопическое устройство. Аналогичным образом указанные операции могут осуществляться и при реализации встроенного в ГУ блока обработки информации, пульта управления и вычислителя, на базе микропроцессорных устройств. При любом из вариантов осуществляется систем или модулей управления и обработки текущей информации способ автокомпенсации независимых от ускорений дрейфов гироскопического устройства, согласно заявленному изобретению, могут осуществляться программно-аппаратным образом автоматически.

Рассмотренный выше пример осуществления, как было указано раньше, относился к продольной компоновке гироскопического инклинометра, однако, очевидно, что реализованный в настоящем изобретении способ автокомпенсации может быть применен при реализации любых других гироскопических приборах, т.к. в данном случае, основным объектом наблюдения является собственно гироскоп и возможность управления разворотом рамки для компенсации корпусных дрейфов гироскопа.

Без потери качества способа автокомпенсации согласно изобретению, в качестве ГУ может быть использован:

- один двухосный ДУС, установленный так, чтобы ось его кинетического момента была параллельна оси вращения рамки.

При использовании двухосного ДУС в качестве ГУ, ДУС измеряет две проекции угловой скорости. Значения угловых скоростей будут содержать погрешности, в том числе, корпусные дрейфы, к которым справедлив способ автокомпенсации, все вышеуказанные выводы остаются справедливыми и для данного варианта осуществления изобретения.

- два одноосных ДУС, оси чувствительности которых ортогональны друг другу и оси вращения рамки.

При использовании двух одноосных ДУС в качестве ГУ, измеряют две проекции угловой скорости, при этом значения угловых скоростей будут содержать погрешности, в том числе, корпусные дрейфы, к которым справедлив способ автокомпенсации, раскрытый выше в описании и соответствующий заявленному изобретению.

Таким образом, заявленный способ автокомпенсации независящих от ускорения дрейфов ГУ позволят существенно повысить точность навигационной системы ГУ за счет модуляции весовых коэффициентов, определяющих степень влияния корпусных дрейфов ГУ на погрешность хранения базового направления, независимо от движения объекта.

Похожие патенты RU2603767C1

название год авторы номер документа
ГИРОСКОПИЧЕСКАЯ НАВИГАЦИОННАЯ СИСТЕМА 2000
  • Юрист С.Ш.
  • Смоллер Ю.Л.
  • Жбанов Ю.К.
  • Бержицкий В.Н.
  • Ильин В.Н.
RU2169903C1
СПОСОБ ИЗМЕРЕНИЯ ПРОЕКЦИЙ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ВЕКТОРА УГЛОВОЙ СКОРОСТИ ВРАЩЕНИЯ ЗЕМЛИ ДЛЯ ОПРЕДЕЛЕНИЯ АЗИМУТАЛЬНОГО НАПРАВЛЕНИЯ (КОМПАСИРОВАНИЯ) 2005
  • Алимов Сергей Михайлович
  • Биндер Яков Исаакович
  • Дудницын Борис Васильевич
  • Малтинский Моисей Иосифович
  • Мумин Олег Леонидович
  • Святый Василий Васильевич
  • Сумароков Виктор Владимирович
RU2300078C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО КУРСА С ПОМОЩЬЮ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ 1995
  • Редькин С.П.
RU2098766C1
ГИРОГОРИЗОНТКОМПАС 2015
  • Буров Дмитрий Алексеевич
  • Филиппов Сергей Иванович
  • Шашок Владимир Николаевич
RU2601240C1
ГИРОГОРИЗОНТКОМПАС 2014
  • Буров Дмитрий Алексеевич
  • Верзунов Евгений Иванович
RU2550592C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА И ЗЕНИТНОГО УГЛА СКВАЖИНЫ И ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР 1999
  • Дьяченко С.П.
  • Кожин В.В.
  • Лещев В.Т.
  • Лосев В.В.
  • Павельев А.М.
  • Пантелеев В.И.
  • Фрейман Э.В.
RU2159331C1
ГИРОГОРИЗОНТКОМПАС 2016
  • Буров Дмитрий Алексеевич
  • Тютюгин Дмитрий Юрьевич
  • Филиппов Сергей Иванович
RU2617136C1
ГИРОГОРИЗОНТКОМПАС 2015
  • Попов Анатолий Борисович
RU2610022C1
ГИРОИНЕРЦИАЛЬНЫЙ МОДУЛЬ ГИРОСКОПИЧЕСКОГО ИНКЛИНОМЕТРА 2012
  • Кривошеев Сергей Валентинович
  • Стрелков Александр Юрьевич
RU2499224C1
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА КОМПЕНСАЦИИ ФАЗОВЫХ ИСКАЖЕНИЙ ПРИНИМАЕМЫХ СИГНАЛОВ, ОТРАЖЕННЫХ ОТ ОБЛУЧАЕМОГО ОБЪЕКТА ВИЗИРОВАНИЯ, С ОДНОВРЕМЕННЫМ ЕГО ИНЕРЦИАЛЬНЫМ ПЕЛЕНГОВАНИЕМ И ИНЕРЦИАЛЬНЫМ АВТОСОПРОВОЖДЕНИЕМ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Бердичевский Герман Ефимович
  • Блинов Валерий Анатольевич
  • Шестун Андрей Николаевич
RU2526790C2

Иллюстрации к изобретению RU 2 603 767 C1

Реферат патента 2016 года СПОСОБ АВТОКОМПЕНСАЦИИ НЕЗАВИСЯЩИХ ОТ УСКОРЕНИЯ ДРЕЙФОВ ГИРОСКОПИЧЕСКОГО УСТРОЙСТВА

Изобретение относится к области прецизионного приборостроения и может быть использовано при создании и эксплуатации навигационных систем на базе гироскопических устройств (ГУ). Способ автокомпенсации не зависящих от ускорения дрейфов гироскопического устройства, для оценки которого используют текущее значение расчетного интегрального параметра N, определяемого путем математической обработки выходных сигналов гироскопа, показаний датчика угла и акселерометров. При этом принудительный разворот рамки вокруг оси, параллельной оси кинетического момента на текущий расчетный поправочный угол поворота рамки, осуществляют при достижении или превышении текущим значением расчетного интегрального параметра N предустановленного порога, определяемого как отношение среднеквадратичного отклонения (СКО) максимальной допустимой погрешности хранения направления, вызванной корпусными дрейфами, к СКО неопределенности этих дрейфов. Технический результат - повышение точности навигационной системы за счет снижения влияния корпусных дрейфов ГУ на погрешность хранения базового направления, независимо от закона движения объекта. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 603 767 C1

Способ автокомпенсации корпусных дрейфов гироскопического устройства (ГУ), установленного вместе с триадой акселерометров на поворотной рамке, снабженной двигателем и датчиком угла, таким образом, что ось вращения рамки параллельна вектору кинетического момента ГУ, заключающийся в том, что с помощью рамки, связанной с двигателем, корпус ГУ разворачивают в дискретные моменты времени вокруг оси, параллельной вектору кинетического момента ГУ, с дискретной фиксацией положений, отличающийся тем, что используют автокомпенсацию с обратной связью, при которой программно-аппаратным образом осуществляют непрерывное отслеживание уровня подавления корпусных дрейфов, для оценки которого используют текущее значение расчетного интегрального параметра N, определяемого путем математической обработки выходных сигналов гироскопа, показаний датчика угла и акселерометров, а принудительный разворот рамки вокруг оси параллельной оси кинетического момента на текущий расчетный поправочный угол поворота рамки β i+1, с обеспечением возможности компенсации корпусных дрейфов гироскопа, осуществляют при достижении или превышении текущим значением расчетного интегрального параметра N предустановленного порога Nmax, определяемого как отношение среднеквадратичного отклонения (СКО) максимальной допустимой погрешности хранения направления σAmax, вызванной корпусными дрейфами, к СКО неопределенности этих дрейфов στ, причем значение интегрального параметра N в каждый момент времени определяют путем математической обработки по формуле:
Ν = K τ x 2 + K τ y 2 ,
где K τ x и K τ y - весовые коэффициенты, зависящие от угловых параметров движения объекта, определяемые путем математической обработки выходных сигналов гироскопа, показаний датчика угла (ДУ) и/или акселерометров по формулам
{ K τ x ( t ) = 0 t sin ( Ψ ( t ) + β ( t ) ) sin θ ( t ) d t K τ y ( t ) = 0 t cos ( Ψ ( t ) + β ( t ) ) sin θ ( t ) d t ,
где θ и Ψ - углы ориентации между корпусом объекта и горизонтной системой координат, β - угол между ГУ и корпусом объекта,
а текущий поправочный угол поворота рамки β i + 1 определяют в момент времени, когда N≥ N max путем математической обработки выходных сигналов гироскопа, показаний ДУ и/или акселерометров по формулам из следующей системы уравнений:
{ sin β i + 1 = sin β i K 1 + cos β i K 2 N ( t i ) ( K τ x ( t i ) K τ x ( t k ) ) 2 + ( K τ y ( t i ) K τ y ( t k ) ) 2 cos β i + 1 = cos β i K 1 sin β i K 2 N ( t i ) ( K τ x ( t i ) K τ x ( t k ) ) 2 + ( K τ y ( t i ) K τ y ( t k ) ) 2 , (*)
где параметры К1 и К2:
{ K 1 = K τ y ( t i ) K τ y ( t k ) + K τ x ( t i ) K τ x ( t k ) ( N ( t i ) ) 2 K 2 = K τ y ( t i ) K τ x ( t k ) K τ x ( t i ) K τ y ( t k ) , а ( N ( t i ) ) = ( K τ x ( t i ) ) 2 + ( K τ y ( t i ) ) 2 -
при этом t i - момент времени вычисления текущего поправочного угла β i + 1 , когда условие N ≥ Nmax стало истиной, β i - текущее значение угла между ГУ и корпусом объекта,
t i 1 - момент времени установки рамки в положение β i .
t k - момент времени наблюдения за движением объекта, удовлетворяющий следующему условию: t i 1 < t k < t i ,
а Nmax= σAmax/ στ.

2. Способ по п. 1, отличающийся тем, что длительность интервала времени между принудительными разворотами рамки ГУ вокруг оси параллельной вектору кинетического момента на текущий поправочный угол поворота рамки β i+1, зависящий от угловых параметров движения объекта, определяют на основании текущего значения весовых коэффициентов K τ x и K τ y и расчетного интегрального параметра N, а также соотношения N с предустановленным пороговым значением N max .

3. Способ по любому из пп. 1 и 2, отличающийся тем, что в качестве ГУ используют один двухосный ДУС, установленный так, чтобы ось его кинетического момента была параллельна оси вращения рамки.

4. Способ по любому из пп. 1 и 2, отличающийся тем, что в качестве ГУ используют два одноосных ДУС, оси чувствительности каждого из которых ортогональны оси вращения рамки и друг другу.

Документы, цитированные в отчете о поиске Патент 2016 года RU2603767C1

СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТЕЙ ИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЬНЫХ ЭЛЕМЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Шепеть Игорь Петрович
  • Бражнев Сергей Михайлович
  • Бондаренко Дмитрий Викторович
  • Литвин Дмитрий Борисович
  • Литвина Екатерина Дмитриевна
  • Захарин Александр Викторович
  • Слесаренок Сергей Владимирович
RU2550298C1
СПОСОБ КАЛИБРОВКИ ГИРОСКОПИЧЕСКИХ ИЗМЕРИТЕЛЕЙ УГЛОВОЙ СКОРОСТИ 1999
  • Лебеденко О.С.
  • Шепеть И.П.
  • Сельвесюк Н.И.
  • Иванов М.Н.
  • Протасов К.А.
  • Дорожкин А.Д.
RU2156959C1
ГИРОКОМПАСНАЯ СИСТЕМА ОРИЕНТАЦИИ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ 2012
  • Виленский Владимир Викторович
  • Зайцев Сергей Эдуардович
  • Зимин Сергей Николаевич
  • Матвеев Валерий Фёдорович
  • Рябиков Виктор Сергеевич
RU2498216C1
СПОСОБ ГИРОКОМПАСИРОВАНИЯ С ПРИМЕНЕНИЕМ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ ПРИ НЕТОЧНОЙ ВЫСТАВКЕ ГИРОСКОПА НА ОБЪЕКТЕ 2004
  • Джанджгава Гиви Ивлианович
  • Будкин Владимир Леонидович
  • Редькин Сергей Петрович
  • Редькина Валентина Павловна
RU2267748C1

RU 2 603 767 C1

Авторы

Биндер Яков Исаакович

Лысенко Алексей Сергеевич

Даты

2016-11-27Публикация

2015-07-31Подача