ЭПОКСИУРЕТАНОВОЕ СВЯЗУЮЩЕЕ С ПОВЫШЕННОЙ ТЕПЛО- И ТЕРМОСТОЙКОСТЬЮ Российский патент 2017 года по МПК C08G18/58 C08G59/14 

Описание патента на изобретение RU2614246C1

Изобретение относится к области создания связующего без применения растворителей для тепло- и термостойких полимерных композиционных материалов (ПКМ), применяемых для изготовления высоконагруженных конструкций на основе волокнистых наполнителей, которые могут эксплуатироваться при температурах (180÷200)°С и обладают хорошей химической стойкостью к кислотам. Изобретение может быть использовано в различных областях промышленности, строительстве, машиностроении, авиастроительной, электротехнической и других отраслях промышленности.

Эпоксиуретановое связующее включает 100 мас. ч. полиизоцианата (марки Воротек СД-100 или Воронат М-229), 25 мас.ч. полифункциональной эпоксиноволачной смолы (марки УП-643 или DEN-438), 10 мас. ч. фенилглицидилового эфира ЭФГ и 0,3-0,5 мас.ч. катализатора марки ТЭА (триэтаноламин).

Известны эпоксидные связующие для волокнистых углеродных наполнителей, включающие, мас.ч. %: эпоксидную полифункциональную смолу (ЭХД, УП-610, УП-643, ЭН-6, ЭТФ, ЭПОКС-01Н, JER 604) 10,0-50,0, диглицидиловый эфир резорцина с гидроксильными группами (УП-652, УП-637, УПП-63) 10,0-50,0, полиизоцианат (MR-100, гексаметилендиизоцианат, суризон МЛ, GBW) 0,1-3,0, отвердитель 4,4'- диаминодифенилсульфон 17,0-30,0, полиарисульфон (PES, ПСФФ-30, ПСФФ-70, ПСФФ-90) (патент РФ №2513916).

Указанные связующие имеют достаточно высокую вязкость, а при нагревании, с целью понижения ее на стадии пропитки, быстро набирают вязкость (в течение 0,5 часа двойная вязкость) по причине сшивания в процессе полимеризации. Известен способ получения эпоксиуретановых смол путем взаимодействия алифатических диэпоксидов с изоцианатами (см. Пластические массы, 1982, №11, с. 12-13).

Недостатком известного способа является сравнительно невысокая теплостойкость получаемых эпоксиуретановых смол.

Аналогом заявляемого технического решения является способ получения эпоксиуретановых смол путем взаимодействия эпоксидной составляющей (эпоксидиановая смола ЭД-16, диглицидиловый эфир полиэпихлоргидрина Э-181, олигомера окиси пропилена с концевыми эпоксидными группами Лапроксид 603 в соотношении мас.ч. 47:37:16) и технический ароматический полиизоцианат в соотношении смесь эпоксидных смол : полиизцианат = 91:9 мас.ч. Полиизоцианат представляет собой продукт фосгенирования ароматического полиамина и состоит из смеси дифенилметандиизоцианатов и 3- и 4-ядерных (т.е. содержащих бензольные кольца) три- и тетраизоционатов (патент РФ №2295544).

Недостатками указанного способа является высокая вязкость получаемых эпоксиуретановых смол (по примерам 1-10 динамическая вязкость находится в пределах 1800-2100 мПа⋅с), что соответственно в дальнейшем сказывается на качестве пропитки волокнистых наполнителей при изготовлении препрегов и премиксов.

Технической задачей предлагаемого изобретения является разработка эпоксиуретановых связующих с длительной жизнеспособностью (5÷6 часов) при температуре переработки (20÷30)°С при рабочей динамической вязкости до 1000 мПа⋅с в процессе пропитки армирующих наполнителей, без применения растворителей и высокой реакционной способности на стадии отверждения. А также органо-, базальто-, угле- и стеклопластики на основе этих связующих должны обладать высокой теплостойкостью при сохранении высоких значений деформационно-прочностных характеристик с использованием доступных материалов.

Для решения поставленной задачи предлагается использовать в избытке ароматический полиизоцианат со смесью эпоксидных смол и аминного отвердителя.

В связи с этим были проведены экспериментальные работы по созданию связующего без растворителей с повышенными термо- и теплостойкостью, химической стойкостью к кислотам, из стеклопластика на его основе с более высокими физико-механическими показателями: «изгибающее напряжение при разрушении», «разрушающее напряжение при сжатии», «разрушающее напряжение при растяжении» при температурах (180-200)°С.

Предварительно эпоксидные смолы, имеющие высокую вязкость (DEN 438, УП-643, ЭХД), нагревали до температуры (70-80)°С и смешивали с фенилглицидиловым эфиром в качестве активного разбавителя в соотношении 100:40 (где 40 мас.ч. – фенилглицидиловый эфир). Смесь охлаждали до (20-25)°С и использовали для приготовления связующих.

Изменение динамической вязкости связующих по времени в процессе экспозиции при температуре 25°С приведены в таблице 1.

Время желатинизации при 180°С:

связующее по примеру 1б - 24 мин (с ТЭА - 0,3 мас.ч.)

связующее по примеру 2 - 28 мин.

Исходя из полученных данных, по динамической вязкости для связующего по примеру 1б, в дальнейшем использовали катализатор ТЭА в количестве 0,3 мас.ч. Также были проведены работы по созданию образцов, отвержденных связующих по примерам 1б и 2, размерами (140×100×15) мм, с целью определения показателя «теплостойкость по Мартенсу». Было установлено, что получить такие заготовки невозможно из-за большой толщины. В процессе отверждения в связующих образуются большое количество пустот от выделения газообразного СО2, образующегося в результате реакции взаимодействия изоцианатных и эпоксидных групп. С целью устранения образования пузырьков в связующие был добавлен силазан в количестве 11 мас.ч. на 100 мас.ч. связующего. В результате получены заготовки отвержденных связующих по примерам 1б и 2 размерами (140×100×15) мм с небольшим количеством мелких вкраплений пузырьков. Из заготовок отвержденных связующих были изготовлены образцы для определения показателя «теплостойкость по Мартенсу».

Результаты испытаний:

связующее по примеру 1б - Тм≈220°С

связующее по примеру 2 - Тм≈170°С.

Для изучения физико-механических свойств стеклопластиков на основе связующего по примеру 1б и стеклоткани марки ORTEX 470 (на стекле марки «Advantex») были изготовлены несколько плит толщиной 4 мм и 9 мм. Слои стеклоткани размером (300×300) мм пропитывали связующим по примеру 1б при температуре (20-25)°С в лабораторных условиях.

Оптимальная вязкость связующих для «мокрой» намотки и для изготовления препрегов на практике составляет по вискозиметру Брукфельда до 1000 мПа⋅с при 25°С. Именно такие значения динамической вязкости связующих также эффективны для пропитки тканей различной структуры при изготовлении препрегов для «сухой» намотки. В связи с этим связующие легко проникают в межнитянные пространства тканевых наполнителей и хорошо смачивают волокна.

Определение показателя «массовая доля растворимой смолы» связующего по примеру 1б в препрегах проводили с помощью стандартных и общепринятых методик. Данные испытаний:

- на 3 сутки хранения - 100%

- на 4 сутки хранения - 75,9%

- на 5 сутки хранения - 65,4%.

Через семь суток хранения препрег на основе связующего стал менее липким и более упругим. Показатель «массовая доля растворимой смолы» составил ≈30%.

Из полученных плит были изготовлены образцы для определения физико-механических показателей. Полученные результаты приведены в таблице 2.

Эпоксиуретановые композиции образуют полимеры с высокой химической стойкостью в агрессивных средах, растворах кислот и щелочей. Для оценки химической стойкости стеклопластика в агрессивных средах на основе эпоксиуретанового связующего по примеру 1б образцы были помещены в следующие агрессивные среды: в растворы серной кислоты 5%-, 50%-, 70%-ной концентрации и в растворы соляной кислоты 10%-, 37%-ной концентрации. Оценка химической стойкости осуществлялась по ГОСТ 12020 в процессе экспозиции в течение 77 суток. В течение этого периода контролировалось изменение массы образцов в помещенных средах через каждые 7 суток и определение изменения физико-механических показателей («изгибающее напряжение при разрушении» ГОСТ 4648 и «модуль упругости при изгибе» ГОСТ 9550») после экспозиции.

Далее была проведена работа по определению физико-механических свойств стеклопластиков на основе эпоксиуретанового связующего по примеру 1б при повышенных рабочих температурах. Данные испытания проводили на разрывной машине БРП-5-3 с температурной камерой. Полученные физико-механические показатели: «изгибающее напряжение при разрушении в осевом направлении», «разрушающее напряжение при сжатии в осевом направлении», «разрушающее напряжение при растяжении» для стеклопластиков, изготовленных на эпоксиуретановом связующем, приведены в таблице 4.

Отличительными особенностями предлагаемых эпоксиуретановых связующих горячего отверждения для армированных пластиков являются следующие признаки:

- низкая динамическая вязкость при проведении процесса пропитки препрега при нормальной температуре переработки (20÷30)°С;

- увеличение времени жизнеспособности связующих в 2 раза;

- высокая реакционная способность;

- повышенная термо- и теплостойкость связующих и армированных пластиков на их основе;

- повышенная химическая стойкость к агрессивным средам (особенно к кислотам);

- повышенная износостойкость материалов на основе предложенных эпоксиуретановых связующих.

Указанные отличительные существенные признаки являются новыми, так как их использование в предложенной совокупности, количественном и качественном соотношении в известном уровне техники - в прототипе и аналоге - не обнаружены, что позволяет характеризовать предложенные эпоксидные связующие для армированных пластиков соответствующими критерию "новизна".

Единая совокупность новых существенных признаков с общими известными существенными признаками позволяет решить поставленную задачу и достичь новый технический результат, что характеризует предложенные эпоксиуретановые связующие существенными отличиями от известного уровня техники - прототипа и аналога. Новые эпоксиуретановые связующие для армированных пластиков являются результатом научно-экспериментальных исследований и творческого вклада, неочевидны для специалистов и соответствуют критерию "изобретательский уровень".

Применение ароматических полиизоцианатов марки Воротек СД-100 и Воронат М-229, в состав которых входят дифенилметандиизоцианат и гомологи 4,4'-метилендифенилдиизоцианат, дифенилметан-4,4'-диизоцианат со следующими техническими показателями: NCO - эквивалент = 131,3-140,0; динамическая вязкость при 25°С = 180-260 мПа⋅с; содержание NCO - групп = 30,0-32,0 для модификации эпоксидных олигомеров, обусловлено целью создания композиционных материалов, способствующих повышению функциональности эпоксидов, улучшению прочностных показателей, термо- и теплостойкости, приводит к существенному росту когезионной и адгезионной прочности. Это обусловлено тем, что изоцианатные группы взаимодействуют с присутствующими в эпоксидных олигомерах вторичными гидроксильными группами с образованием уретановых групп -NH-CO-O-, обладающих высокой энергией когезии, а использование аминного отвердителя при избытке полиизоцианата позволяет также получать оксазолидоны:

,

и при этом наблюдается значительное увеличение теплостойкости, физических и электрических свойств при повышенных температурах благодаря наличию в полимерах гетероцикла - оксазолидона. Подобные структуры, находящиеся в композитах, должны повышать прочностные характеристики, увеличивать твердость, термическую стойкость и химическую стойкость в агрессивных средах используемых материалов.

Изобретение позволяет получать органо-, базальто-, угле-, стеклопластики с повышенной тепло- и термостойкостью, химической стойкостью в агрессивных, средах, а также малой пористостью. Изобретение позволяет также улучшить санитарно-гигиенические условия труда и экологическую обстановку при производстве за счет предложенной технологии изготовления армированных наполнителями пластиков без применения растворителей.

Похожие патенты RU2614246C1

название год авторы номер документа
ЭПОКСИУРЕТАНОВОЕ СВЯЗУЮЩЕЕ С УВЕЛИЧЕННОЙ ОГНЕСТОЙКОСТЬЮ, ТЕПЛО- И ТЕРМОСТОЙКОСТЬЮ 2019
  • Щеголев Игорь Юрьевич
  • Емельянов Владимир Михайлович
RU2712044C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ АНГИДРИДНОГО ОТВЕРЖДЕНИЯ С ПРИМЕНЕНИЕМ ЛАТЕНТНОГО ИНИЦИАТОРА И-120У 2011
  • Емельянов Владимир Михайлович
  • Щеголев Игорь Юрьевич
  • Горелый Константин Александрович
  • Малютин Евгений Викторович
RU2496810C2
ЭПОКСИДНОЕ СВЯЗУЮЩЕЕ, ПРЕПРЕГ НА ЕГО ОСНОВЕ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2012
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Хрульков Александр Владимирович
  • Бабин Анатолий Николаевич
  • Коган Дмитрий Ильич
  • Панина Наталья Николаевна
  • Гуревич Яков Михайлович
  • Ким Михаил Александрович
RU2513916C1
ЭПОКСИДНОЕ КЛЕЕВОЕ СВЯЗУЮЩЕЕ 2014
  • Каблов Евгений Николаевич
  • Чурсова Лариса Владимировна
  • Бабин Анатолий Николаевич
  • Григорьев Матвей Михайлович
  • Ткачук Анатолий Иванович
  • Панина Наталия Николаевна
  • Гуревич Яков Михайлович
  • Гребенева Татьяна Анатольевна
RU2572416C1
Расплавное эпоксидное связующее, семипрег на его основе и изделие, выполненное из него 2022
  • Каблов Евгений Николаевич
  • Терехов Иван Владимирович
  • Ткачук Анатолий Иванович
  • Донецкий Кирилл Игоревич
  • Караваев Роман Юрьевич
  • Кузнецова Полина Андреевна
  • Любимова Анастасия Сергеевна
RU2803987C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ 2010
  • Мухаметов Рамиль Рифович
  • Ахмадиева Ксения Расимовна
  • Чурсова Лариса Владимировна
  • Каблов Евгений Николаевич
  • Хрульков Александр Владимирович
  • Душин Михаил Иванович
RU2447104C1
Способ получения препрегов для высокопрочных композитов 2022
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
  • Колесников Владимир Иванович
  • Лавров Игорь Викторович
  • Бардушкин Андрей Владимирович
RU2788749C1
Эпоксидное связующее 2020
  • Каблов Евгений Николаевич
  • Терехов Иван Владимирович
  • Ткачук Анатолий Иванович
  • Афанасьева Евгения Александровна
  • Донецкий Кирилл Игоревич
  • Караваев Роман Юрьевич
RU2754399C1
ГИБРИДНОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛО-ХИМИЧЕСКИ СТОЙКОГО ПРЕСС-МАТЕРИАЛА И ПРЕСС-МАТЕРИАЛ НА ЕГО ОСНОВЕ 2018
  • Яковлев Юрий Юрьевич
  • Нащокин Антон Владимирович
  • Калугин Денис Иванович
  • Галигузов Андрей Анатольевич
  • Малахо Артем Петрович
  • Авдеев Виктор Васильевич
RU2674202C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2004
  • Кленин Ю.Г.
  • Коробко А.П.
  • Пенская Т.В.
  • Сорина Т.Г.
  • Ушаков А.Е.
  • Хайретдинов А.Х.
RU2255097C1

Реферат патента 2017 года ЭПОКСИУРЕТАНОВОЕ СВЯЗУЮЩЕЕ С ПОВЫШЕННОЙ ТЕПЛО- И ТЕРМОСТОЙКОСТЬЮ

Настоящее изобретение относится к эпоксиуретановым связующим для тепло- и термостойких полимерных композиционных материалов. Указанное связующее включает эпоксидную составляющую и ароматический полиизоцианат. Эпоксидная составляющая представляет собой смесь полифункциональной эпоксиноволачной смолы и фенилглицидилового эфира, взаимодействие которой с ароматическим полиизоцианатом происходит в присутствии аминного отвердителя. Указанным аминным отвердителем является триэтаноламин. Использование данных эпоксиуретановых связующих позволяет получать органо-, базальто-, угле- и стеклопластики с повышенной тепло- и термостойкостью, химической стойкостью в агрессивных средах, а также малой пористостью, а также изобретение позволяет улучшить санитарно-гигиенические условия труда и экологическую обстановку при производстве за счет технологии изготовления армированных наполнителями пластиков без применения растворителей. 4 табл., 2 пр.

Формула изобретения RU 2 614 246 C1

Эпоксиуретановое связующее, включающее эпоксидную составляющую и ароматический полиизоцианат, отличающееся тем, что эпоксидная составляющая представляет собой смесь полифункциональной эпоксиноволачной смолы и фенилглицидилового эфира и взаимодействует с ароматическим полиизоцианатом в присутствии аминного отвердителя при следующем соотношении компонентов, мас.ч.:

полифункциональная эпоксиноволачная смола 25,0 фенилглицидиловый эфир 10,0 ароматический полиизоцианат 100,0 отвердитель триэтаноламин 0,3-0,5

Документы, цитированные в отчете о поиске Патент 2017 года RU2614246C1

СПОСОБ ПОЛУЧЕНИЯ ЭПОКСИУРЕТАНОВОЙ СМОЛЫ 2004
  • Лапицкая Татьяна Валентиновна
  • Лапицкий Валентин Александрович
RU2295544C2
Композиция для изготовления тепло-и термостойких полимеров 1987
  • Панкратов Вячеслав Александрович
  • Френкель Цецилия Мордхаевна
  • Шворак Александр Евгеньевич
  • Голов Вениамин Григорьевич
  • Шутова Надежда Васильевна
  • Баркина Екатерина Ставровна
  • Ларина Лариса Федоровна
SU1659428A1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ 2004
  • Лапицкая Татьяна Валентиновна
  • Лапицкий Валентин Александрович
  • Сидорова Нина Ивановна
RU2295550C2
СПОСОБ ПОЛУЧЕНИЯ ЭПОКСИПОЛИУРЕТАНОВ 2011
  • Николаева Наталия Петровна
  • Кузьмин Михаил Владимирович
  • Кольцов Николай Иванович
RU2457220C1
JP 9235348 A, 09.09.1997
US 20100212830 A1, 26.08.2010
US 4582723 A1, 15.04.1986.

RU 2 614 246 C1

Авторы

Емельянов Владимир Михайлович

Щеголев Игорь Юрьевич

Иванов Александр Владимирович

Даты

2017-03-24Публикация

2015-12-29Подача