Изобретение относится к области машиностроения, в частности к электрофизическим методам обработки для упрочнения закаленных стальных деталей электроискровым легированием.
Из уровня техники известен способ электроискрового нанесения покрытий на металлические поверхности, заключающийся в том, что между вибрирующим электродом-инструментом и обрабатываемой деталью возбуждается электрический разряд в газообразной среде. При этом происходит направленный перенос материала обрабатывающего электрода (анода) на обрабатываемую деталь (катод) и осуществляется диффузионное сцепление его с материалом основы (Авторское свидетельство СССР №89933, 27.05.1943).
Недостатком известного способа является то, что при нанесении покрытий на термообработанные (закаленные) детали под упрочненным слоем образуется зона отпуска - зона сниженной твердости. Это приводит к продавливанию упрочненного слоя детали в процессе ее эксплуатации и, как следствие, к быстрому изнашиванию деталей.
Наиболее близким к заявленному техническому решению по технической сущности и достигаемому результату - прототипом - является способ электроискрового легирования закаленных стальных деталей, заключающийся в переносе легирующего материала электрода-инструмента на поверхность детали под действием электроискровых разрядов между подключенными к источнику электрического тока электродом-инструментом и деталью, при котором электроискровое (электроэрозионное) легирование производят в сочетании с ионным азотированием, которое осуществляют до или после процесса легирования в течение времени, достаточного для насыщения металла азотом на глубину зоны термического влияния (Тарельник В.Б. Упрочнение деталей компрессоров электроэрозионным легированием и ионным азотированием // Химическое и нефтяное машиностроение. 1996. №2, с. 77).
Недостатком прототипа является низкая производительность, обусловленная введением дополнительной операции ионного азотирования. Кроме того, процесс ионного азотирования требует применения сложного и дорогостоящего оборудования, что в конечном итоге увеличивает как текущие, так и капитальные затраты.
Задача изобретения - исключение дополнительной операции при упрочнении закаленных стальных деталей электроискровым легированием.
Техническим результатом, на который направлено изобретение, является повышение производительности упрочнения закаленных стальных деталей электроискровым легированием.
Поставленная задача решается, а заявленный технический результат достигается тем, что в способе электроискрового легирования закаленных стальных деталей, заключающемся в переносе легирующего материала электрода-инструмента на поверхность детали под действием импульсных электроискровых разрядов между подключенными к источнику постоянного электрического тока в качестве анода - электродом-инструментом, и в качестве катода - деталью, в процессе легирования осуществляют непрерывный контакт электрода-инструмента с деталью, а подвод к ним электрического тока осуществляют так, что 10≤j≤100, 10-3≥tch≥10-5, tp>tch, где j - плотность тока (кА/см2), tch - длительность импульса тока (с), tp - длительность паузы между импульсами тока (с).
Изобретение поясняется иллюстрациями, на которых представлены:
на Фиг. 1 - принципиальная схема реализации способа упрочнения закаленных стальных деталей электроискровым легированием;
на Фиг. 2 - график микротвердости обработанной заявленным способом детали на различной глубине;
на Фиг. 3 - график микротвердости обработанной детали на различной глубине при 10>j, 10-3≥tch≥10-5, tp>tch;
на Фиг. 4 - график микротвердости обработанной детали на различной глубине при j>100, 10-3≥tch≥10-5, tp>tch;
на Фиг. 5 - график микротвердости обработанной детали на различной глубине при 10≤j≤100, 10-3≤tch, tp>tch;
на Фиг. 6 - график микротвердости обработанной детали на различной глубине при 10≤j≤100, 10-5≥tch, tp>tch;
на Фиг. 7 - график микротвердости обработанной детали на различной глубине при 10≤j≤100, 10-3≥tch≥10-5, tp<tch.
Заявленный способ электроискрового легирования закаленных стальных деталей осуществляется следующим образом.
Электрод-инструмент 1 вводят в контакт с обрабатываемой деталью 2 и перемещают вдоль обрабатываемой поверхности используя, например, стандартную систему подачи 3 станка, управляемую системой 4 числового программного управления (ЧПУ), при этом контакт электрода-инструмента с деталью осуществляется непрерывно в процессе всей операции легирования (непрерывный контакт инструмента с деталью обеспечивается стандартными средствами, например, аналогичными применяемым при электромеханической обработке ЭМО - http://mirprom.ru/public/elektromehanicheskaya-obrabotka.html-0). При этом электрод-инструмент 1 подключают к положительному полюсу источника постоянного тока 5, а обрабатываемую деталь 2 - к отрицательному, кроме того, в цепь включают генератор 6 электрических импульсов (ГИТ), обеспечивающий подвод электрического тока к электрод-инструменту 1 и обрабатываемой детали 2 с параметрами: 10≤j≤100, 10-3≥tch≥10-5, tp>tch, где j - плотность тока (кА/см2), tch - длительность импульса тока (с), tp - длительность паузы между импульсами тока (с).
В ходе обработки материал электрод-инструмента 1 переносится с анода (электрода-инструмента 1) на катод (обрабатываемую деталь 2).
Указанные параметры тока позволяют реализовать контактный электрический микровзрыв торцевой поверхности электрода и высокоинтенсивный перенос его материала на упрочняемую поверхность. При этом микротвердость обработанной детали увеличивается не хуже, чем в прототипе, а кратковременность процесса не приводит к отпуску термообработанной (закаленной) детали, что отчетливо представлено на Фиг. 2 и, как показали эксперименты, соблюдается в пределах заявленных диапазонов.
Выход параметров за пределы заявленных диапазонов делает обработку невозможной либо существенно снижает ее качество, а именно:
- при 10>j, 10-3≥tch≥10-5, tp>tch перенос материала электрод-инструмента на упрочняемую поверхность не наблюдается, микротвердость обработанной детали остается неизменной (см. Фиг. 3);
- при j>100, 10-3≥tch≥10-5, tp>tch микровзрыв торцевой поверхности электрода сопровождается разбрызгиванием расплавленного материала электрода-инструмента, перенос материала электрода-инструмента на упрочняемую поверхность становится нестабильным, микротвердость обработанной детали по глубине изменяется скачкообразно как в сторону увеличения, так и в сторону уменьшения от исходного значения (см. Фиг. 4);
- при 10≤j≤100, 10-3≤tch, tp>tch чрезмерная длительность импульса тока приводит к отпуску термообработанной (закаленной) детали, что приводит к «провалу» 7 микротвердости обработанной детали по глубине (см. Фиг. 5);
- при 10≤j≤100, 10-5≥tch, tp>tch из-за малой длительности импульса тока перенос материала электрода-инструмента на упрочняемую поверхность резко (экспоненциально) снижается, микротвердость обработанной детали практически остается неизменной (см. Фиг. 6);
- при 10≤j≤100, 10-3≥tch≥10-5, tp<tch малая пауза между импульсами тока приводит к отпуску термообработанной (закаленной) детали, что приводит к «провалу» 7 микротвердости обработанной детали по глубине (см. Фиг. 7).
Пример реализации способа.
Были проведены эксперименты по твердосплавному легированию рабочих поверхностей деталей (дисковых фрез для металлообработки). В качестве материала электрода использовался твердый сплав ВК-8, материал обрабатываемых деталей - быстрорежущая (закаленная) сталь Р6М5 с исходной микротвердостью HK 740 единиц. Режимы обработки и результаты отражены в нижеприведенной Таблице.
Все эксперименты показали полное соответствие результатов графику на Фиг. 2 при соблюдении заявленных параметров J, tch и tp; выход хотя бы одного из указанных параметров за пределы заявленных диапазонов делает обработку невозможной либо существенно снижает ее качество.
Очевидно, что в процессе твердосплавного легирования с использованием предложенного способа отпуск обработанных закаленных деталей не наблюдается, микротвердость обработанных деталей монотонно возрастает по направлению к периферии. При этом необходимость проведения дополнительной операции (ионное азотирование) при упрочнении закаленных стальных деталей электроискровым легированием, как это имеет место в прототипе, полностью исключена при достижении, по крайней мере, не худших показателях качества обработки.
Изложенное позволяет сделать вывод о том, что поставленная задача - исключение дополнительной операции при упрочнении закаленных стальных деталей электроискровым легированием - решена, а заявленный технический результат - повышение производительности - достигнут.
Анализ заявленного технического решения на соответствие условиям патентоспособности показывает, что указанные в независимом пункте формулы изобретения признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:
- объект, воплощающий заявленное техническое решение, при его осуществлении относится к области машиностроения, в частности к электрофизическим методам обработки для упрочнения закаленных стальных деталей электроискровым легированием;
- для заявленного объекта в том виде, как он охарактеризован в независимом пункте формулы изобретения, подтверждена возможность его осуществления с
помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;
- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.
Следовательно, заявленный объект соответствует требованиям условий патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ТЕРМООБРАБОТАННЫХ СТАЛЬНЫХ ДЕТАЛЕЙ | 2015 |
|
RU2603932C1 |
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ТЕРМООБРАБОТАННЫХ СТАЛЬНЫХ ДЕТАЛЕЙ | 2017 |
|
RU2688787C2 |
СПОСОБ НАНЕСЕНИЯ УПРОЧНЯЮЩЕГО ПОКРЫТИЯ | 2013 |
|
RU2545858C1 |
СПОСОБ ЭЛЕКТРОЭРОЗИОННОГО БОРИРОВАНИЯ ПОВЕРХНОСТИ ДЕТАЛИ ИЗ СТАЛИ И ЧУГУНА | 2007 |
|
RU2421307C2 |
Способ электроимпульсного нанесения упрочняющего покрытия из порошка на поверхность стальной детали и устройство для его осуществления | 2018 |
|
RU2705744C1 |
СПОСОБ ЦИАНИРОВАНИЯ СТАЛЬНЫХ ИЛИ ТИТАНОВЫХ ИЗДЕЛИЙ | 2007 |
|
RU2349432C2 |
СПОСОБ ВОССТАНОВЛЕНИЯ ЧАСТИЧНО УДАЛЕННОГО УПРОЧНЕННОГО СЛОЯ СТАЛЬНЫХ ДЕТАЛЕЙ | 2015 |
|
RU2631436C2 |
Способ абразивного шлифования | 1987 |
|
SU1553296A1 |
СПОСОБ ЭЛЕКТРОИСКРОВОГО УПРОЧНЕНИЯ И ВОССТАНОВЛЕНИЯ ИЗНОШЕННЫХ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ | 2010 |
|
RU2440873C1 |
СПОСОБ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2175594C1 |
Изобретение относится к области машиностроения, в частности к электрофизическим методам обработки закаленных стальных деталей электроискровым легированием. В способе электроискрового легирования закаленных стальных деталей осуществляют перенос легирующего материала электрода-инструмента на поверхность детали под действием импульсных электроискровых разрядов между подключенными к источнику постоянного электрического тока в качестве анода электродом-инструментом, а в качестве катода деталью. При этом в процессе легирования осуществляют непрерывный контакт электрода-инструмента с деталью, а подвод к ним электрического тока осуществляют так, что 10≤j≤100, 10-3≥tch≥10-5, tp>tch, где j - плотность тока (кА/см2), tch - длительность импульса тока (с), tp - длительность паузы между импульсами тока (с). Техническим результатом изобретения является упрочнение закаленных стальных деталей электроискровым легированием, обеспечивающее повышение производительности. 7 ил., 1 табл., 1пр.
Способ электроискрового легирования закаленных стальных деталей, включающий осуществление переноса легирующего материала электрода-инструмента на поверхность детали под действием импульсных электроискровых разрядов между подключенными к источнику постоянного электрического тока в качестве анода - электродом-инструментом и в качестве катода деталью, отличающийся тем, что процесс легирования осуществляют с введением электрода-инструмента в непрерывный контакт с деталью и подводом к ним электрического тока с параметрами 10≤j≤100, 10-3≥tch≥10-5, tp>tch, где j - плотность тока, кА/см2, tch - длительность импульса тока, с, tp - длительность паузы между импульсами тока, с.
0 |
|
SU89933A1 | |
Волнировщик свежесформованных асбестоцементных листов | 1977 |
|
SU691296A1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА ВОССТАНАВЛИВАЕМОЙ СТАЛЬНОЙ ИЛИ ЧУГУННОЙ ДЕТАЛИ | 2006 |
|
RU2343049C2 |
Способ электроэрозионной обработки | 1983 |
|
SU1146154A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ЭЛЕКТРОИСКРОВОГО НАНЕСЕНИЯ ПОКРЫТИЙ | 1996 |
|
RU2115762C1 |
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Авторы
Даты
2017-03-30—Публикация
2015-09-29—Подача