КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА Российский патент 2017 года по МПК B01J23/26 B01J23/04 B01J21/04 B01J32/00 C01F7/42 B01J37/02 C07C5/333 

Описание патента на изобретение RU2622035C1

Изобретение относится к области химической технологии и каталитической химии, в частности к способам получения алюмохромовых катализаторов для процессов дегидрирования парафиновых углеводородов до соответствующих непредельных углеводородов, и может найти применение в химической и нефтехимической промышленности.

Известен способ получения алюмооксидного носителя и способ получения катализатора дегидрирования С35 парафиновых углеводородов на этом носителе состава, мас.%: Cr2O3 – 10,0-20,0; K2O – 0,1-5; промотор – 0,1-5; алюмооксидный носитель – остальное [Патент РФ № 2350594, МПК С07С 5/333, B01J 23/26, B01J 21/04, B01J 23/04, B01J 37/02, опубл. 27.03.2009]. В качестве носителя катализатора используют микросферические гранулы оксида алюминия бемитной морфологии, полученные высокотемпературной обработкой гидраргиллита путем нагревания в камере автоклава в атмосфере инертного газа и/или аммиака, и/или углекислого газа в диапазоне температур от 100 до 300°°С и давлении до 150 кгс/см2. Недостатком данного способа является технологическая усложненность, заключающаяся в длительной обработке гидраргиллита (от 0,1 до 20 ч), а также регулировании температуры (не менее 100°С и не более 300°С) и давления. Катализатор имеет недостаточно высокую активность и стабильность.

Известен способ получения алюмохромового катализатора путем смешивания алюминиевого носителя с суспензией, имеющей концентрацию 28-37 мас.% по глинистому минералу и с водными растворами хромовой кислоты и калиевой щелочи состава, вес.%: Cr2O3 – 12,0-16,0; SiO2 – 8,0-13,0; K2O и Na2O или только K2O – 2,0-3,6; Al2O3 – остальное [Патент РФ № 2546646, МПК B01J 21/12, B01J 23/26, B01J 21/16, B01J 37/04, С07С 5/333, опубл. 10.04.2015]. Алюминиевый носитель имеет относительно низкую удельную поверхность (~50 м2/г), крупные частицы и большой разброс по размеру частиц (частицы размером 45 мкм (30 мас.%), частицы размером 20 мкм (10 мас.%), частицы размером более 140 мкм (1,0 мас.%)). Недостатками получаемого катализатора является низкая активность и селективность, а также сложность и многостадийность процесса получения катализатора.

Известен способ получения алюмохромового катализатора для дегидрирования парафиновых углеводородов в олефиновые путем смешивания технической окиси алюминия и глинистого минерала с растворами хромовой кислоты и калиевой щелочи с последующим формованием, сушкой и прокаливанием следующего состава, вес.%: 72-76 – Al2O3, 12-15 – Cr2O3, 7-12 –SiO2 и 2,0-3,5 – K2O [Авторское свидетельство № 675670, МПК B01J 37/04, B01J 23/26, B01J 21/16, опубл. 10.06.2001]. В качестве глинистого минерала используют галлуазит с частицами диаметром 0,05-0,2 мкм и длиной 0,1-1 мкм. Способ получения алюмохромового катализатора отличается сложностью и многостадийностью.

Известен способ получения катализатора состава, мас.%: Cr2O3 – 10,0-20,0; K2O – 0,1-5,0; CuO и/или ZnO и/или ZrO2 и/или MnO2 – 0.1-5; Al2O3 – остальное [Патент РФ №2325227, МПК B01J 37/02, B01J 32/00, B01J 21/04, B01J 23/72, B01J 23/78, B01J 23/80, С07С 5/333, опубл. 27.05.2008]. Недостатком данного способа является технологическая усложненность, а также недостаточно высокая активность и селективность.

Наиболее близким техническим решением к предлагаемому способу является способ приготовления катализатора, содержащего оксид хрома, оксид алюминия, включающий обработку носителя раствором соединений хрома и раствором натрия или натрия и церия [Патент РФ №2256499, МПК B01J 23/26, B01J 23/04, B01J 21/04, B01J 37/02, С07С 5/333, опубл. 20.07.2005]. Способ приготовления носителя на основе оксида алюминия и алюминия включает формирование заготовки из порошка алюминия и неорганической добавки, окисление и последующее спекание, где в качестве неорганической добавки используют продукт термохимической активации гидраргиллита, который представляет собой аморфное соединение Al2O3·nH2O. Катализатор готовят путем пропитки гранул носителя водным раствором CrO3 по влагоемкости носителя. Одновременно с хромовой кислотой в пропиточный раствор вводят растворимые соли добавок натрия и церия в пересчете на оксиды в количестве, мас.%: 0,2-1,0 Na2O, 0.1-2.0 CeO2. После пропитки катализатор сушат на воздухе (ступенчато в течение 18 ч), а затем прокаливают (ступенчато в течение 4-6 ч).

Недостатками данного способа являются многостадийность, сложность технологии и получение носителя неоднородного фазового состава, состоящего из оксида алюминия гамма-, эта-, тэта- и других модификаций, включая стадию гидротермальной обработки при высоких температурах (100-200°С) и давлениях с использованием автоклавного оборудования. Кроме того, при синтезе шихты, содержащей продукт термохимической активации и порошкообразный алюминий в соотношениях ТХА:Al=0÷20:100÷80 (мас.%), при общем объеме пор 0,10-0,26 см3/г образцы имеют относительно низкую удельную поверхность 28,6-51,2 м2/г.

Основной технической задачей предложенного изобретения является создание технологически упрощенного способа получения алюмохромового катализатора с высокими значениями удельной поверхности, механической прочности и каталитической активности.

Техническая задача достигается тем, что катализатор синтезируют пропиткой водным раствором CrO3 алюминий-алюмооксидного носителя, полученного путем гидротермальной обработки порошкообразного металлического алюминия с размером частиц 10–500 нм с последующей термической обработкой при 50-700 С, причем процесс гидротермальной обработки алюминия проводят в одну стадию в массовом соотношении Al:H2O=1:8÷40, при относительно низких температурах (20÷100°С), при атмосферном давлении в течение менее 20 мин без предварительной подготовки материалов и без использования автоклавного оборудования. Микроструктура носителей и катализаторов на их основе характеризуется сформировавшейся пористой ячеистой структурой с открытыми порами. Носители характеризуются удельной поверхностью 178–355 м2/г, средним размером пор (измеренным методом низкотемпературной адсорбции азота) 7,2–13,7 нм, а катализаторы на их основе – 95-137 м2/г и средним размером пор от 9,2 до 13,3 нм. Свойства полученных носителей и катализаторов приведены в таблице 1.

Алюмохромовый катализатор готовят путем пропитки носителя водным раствором CrO3. Концентрацию хромовой кислоты в растворе рассчитывают на содержание в готовом катализаторе 15-23 мас.% Cr2O3. Вместе с хромовой кислотой в раствор для пропитки вводят растворимые соли модифицирующих добавок: калия и/или натрия, церия и/или циркония. Содержание добавок в пересчете на оксиды составляет, мас.%: 0-4 K2O и/или Na2O, 0-4 CeO2 и/или ZrO2. Алюмохромовые катализаторы сушат при температуре 95-120°С и прокаливают в атмосфере воздуха при 400-800°С в течение 4 ч. Алюмохромовый катализатор получают в виде цилиндров с диаметром 2,5-3,0 мм с высокой механической прочностью на раздавливание по образующей.

Полученный алюмохромовый катализатор испытывают в реакции дегидрирования н-бутана и изобутана при температуре 540 и 590°С. Процесс проводят в проточном кварцевом реакторе в стационарном слое алюмохромового катализатора с размером фракции 1-2 мм. Алюмохромовый катализатор смешивают с кварцевым стеклом такой же фракции в соотношении кварц:катализатор=1:1. Испытания проводят при атмосферном давлении в смеси н-бутана либо изобутана (600 ч-1) и азота с объемной скоростью подачи смеси 2670 ч-1. Процесс проводят циклами в последовательности: дегидрирование – 12 мин, продувка инертным газом – не менее 5 мин, регенерация воздухом – 15 мин, продувка инертным газом – не менее 5 мин, затем цикл повторяют. Степень превращения, выход и селективность непредельных углеводородов оценивают методом газовой хроматографии при отборе пробы на десятой минуте после начала дегидрирования.

Примеры конкретного выполнения.

Пример 1.

Алюмохромовый катализатор, полученный пропиткой носителя водным раствором CrO3, дополнительно содержащим растворимые соли калия и/или натрия, церия и/или циркония, с последующей сушкой при 95-120°С и прокалкой при 750°С в течение 4 ч, отличающийся тем, что в качестве носителя используют алюминий-алюмооксидный носитель, полученный при гидротермальной обработке порошкообразного металлического алюминия с дистиллированной водой в соотношении Al:H2O=1:17 в течение 15 мин при температуре 60-95°С с последующей термообработкой при температуре 95°С 6 ч.

Пример 2.

Алюмохромовый катализатор, аналогичный п. 1, отличающийся тем, что при получении катализатора дополнительно добавляют порообразователь органической природы в количестве 2 мас.% от массы катализатора.

Пример 3.

Алюмохромовый катализатор, аналогичный п. 1, отличающийся тем, что носитель подвергается термообработке при температуре 400°С 6 ч.

Пример 4.

Алюмохромовый катализатор, аналогичный п. 3, отличающийся тем, что при получении катализатора дополнительно добавляют порообразователь органической природы в количестве 2 мас.% от массы катализатора.

Пример 5.

Алюмохромовый катализатор, аналогичный п. 1, отличающийся тем, что носитель подвергается термообработке при температуре 700°С 6 ч.

Пример 6.

Алюмохромовый катализатор, аналогичный п. 5, отличающийся тем, что при получении катализатора дополнительно добавляют порообразователь органической природы в количестве 2 мас.% от массы катализатора.

Пример 7.

Способ дегидрирования парафиновых углеводородов в стационарном слое, отличающийся тем, что используют катализатор по пп.1-6.

В таблице 1 приведены характеристики носителя и алюмохромовых катализаторов на их основе в сравнении с прототипом. Из представленных данных видно, что алюминий-алюмооксидные носители превосходят носитель, используемый для получения прототипа, по величине удельной поверхности и объему пор. Катализаторы по примеру 1-6 характеризуются высокими значениями удельной поверхности от 95 до 137 м2/г при объеме пор 0,22-0,42 см3/г, при этом гранулы катализатора имеют более высокую прочность на раздавливание 6,4-10,0 МПа, по сравнению с 4,8 МПа для прототипа.

В таблице 2 приведены каталитические характеристики полученных катализаторов в сравнении с катализатором-прототипом в реакции дегидрирования н-бутана и изобутана при температурах 540 и 590°С. Из представленных данных видно, что катализаторы по примеру 1-6 превосходят катализаторы-прототипы по степени превращения н-бутана и изобутана и выходу соответствующих непредельных углеводородов.

Таким образом, предложенные по примерам 1-6 алюмохромовые катализаторы на основе алюминий-алюмооксидного носителя, полученные упрощенным способом, имеют высокие значениями удельной поверхности и механической прочности, обладают высокой каталитической активностью в реакции дегидрирования парафиновых углеводородов, в частности н-бутана и изобутана, в соответствующие непредельные углеводороды.

Таблица 1 - Характеристики носителей и катализаторов

Таблица 2 - Каталитические характеристики катализаторов в реакции дегидрирования н-бутана и изобутана при 540/590°С

* Пример 2 из патента-прототипа, поскольку в патенте активность в дегидрировании н-бутана приведена только для этого примера

Похожие патенты RU2622035C1

название год авторы номер документа
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ С-С ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2013
  • Бусыгин Владимир Михайлович
  • Нестеров Олег Николаевич
  • Гильманов Хамит Хамисович
  • Романов Вячеслав Геннадьевич
  • Ламберов Александр Адольфович
  • Егорова Светлана Робертовна
  • Бекмухамедов Гияз Эдуардович
RU2538960C1
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ C-C ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2019
  • Ламберов Александр Адольфович
  • Егорова Светлана Робертовна
RU2705808C1
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ И ИЗОПАРАФИНОВЫХ С-С УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2021
  • Катаев Александр Николаевич
RU2772741C1
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2010
  • Касьянова Лилия Зайнулловна
  • Морозов Юрий Виталиевич
  • Салахов Рашит Шайхуллович
  • Гришанин Николай Петрович
  • Баженов Юрий Петрович
  • Алексеева Елена Владимировна
RU2432203C1
Катализатор дегидрирования С-С парафиновых углеводородов в стационарном слое 2019
  • Елохина Нина Васильевна
  • Гончарова Дарья Вадимовна
  • Яковина Ольга Александровна
  • Седашова Александра Владимировна
RU2731568C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2014
  • Каримов Олег Хасанович
  • Даминев Рустем Рифович
  • Касьянова Лилия Зайнулловна
  • Каримов Эдуард Хасанович
RU2539300C1
КАТАЛИЗАТОР С НИЗКИМ СОДЕРЖАНИЕМ ОКСИДА ХРОМА ДЛЯ ДЕГИДРИРОВАНИЯ ИЗОБУТАНА И СПОСОБ ДЕГИДРИРОВАНИЯ ИЗОБУТАНА С ЕГО ИСПОЛЬЗОВАНИЕМ 2016
  • Бугрова Татьяна Александровна
  • Салаев Михаил Анатольевич
  • Мамонтов Григорий Владимирович
RU2627667C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2008
  • Гулиянц Сурен Татевосович
  • Буторина Наталья Валерьевна
  • Шишкина Галина Филипповна
  • Гулиянц Галина Пантелеевна
RU2391134C2
Катализатор дегидрирования лёгких парафиновых углеводородов и способ получения непредельных углеводородов с его использованием 2016
  • Мамонтов Григорий Владимирович
  • Бугрова Татьяна Александровна
  • Магаев Олег Валерьевич
  • Мусич Павел Григорьевич
  • Золотухина Анастасия Ивановна
  • Мерк Арина Александровна
RU2627664C1
Способ получения микросферического катализатора дегидрирования парафиновых C-C углеводородов 2016
  • Гильманов Хамит Хамисович
  • Бусыгин Владимир Михайлович
  • Ламберов Александр Адольфович
  • Гафуров Ильшат Рафкатович
  • Бикмурзин Азат Шаукатович
RU2626323C1

Реферат патента 2017 года КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА

Изобретение относится к способу получения алюмохромового катализатора для процессов дегидрирования парафиновых углеводородов до соответствующих непредельных углеводородов, к катализатору и к способу дегидрирования. Описан катализатор, содержащий в своём составе оксиды хрома, калий и/или натрий, церий и/или цирконий, нанесённые на композитный носитель, включающий оксид алюминия и алюминий. Носитель содержит 2-5% алюминия, причём носитель получен гидротермальной обработкой порошкообразного металлического алюминия с размером частиц 10÷500 нм в одну стадию в массовом соотношении Al:H2O=1:17 при относительно низких температурах (20÷100°°С) и атмосферном давлении в течение 15 мин (без предварительной подготовки материалов и без использования автоклавного оборудования) с последующей термической обработкой при температуре 95-700°С. Способ получения катализатора включает пропитку носителя водным раствором, содержащим растворимые соединения хрома, калия и/или натрия, церия и/или циркония с последующей сушкой при 95-120°C и прокалкой при 400-800°C в течение 4 ч. Описан процесс дегидрирования парафиновых углеводородов в стационарном слое с использованием упомянутого выше алюмохромового катализатора. Технический эффект – получение гранулированного алюмохромового катализатора цилиндрической формы с высокой механической прочностью и каталитической активностью в дегидрировании парафиновых углеводородов в соответствующие непредельные углеводороды. 3 н.п. ф-лы, 2 табл., 7 пр.

Формула изобретения RU 2 622 035 C1

1. Катализатор дегидрирования парафиновых углеводородов, содержащий в своем составе оксиды хрома, калий и/или натрий, церий и/или цирконий, нанесенные на композитный носитель, включающий оксид алюминия и алюминий, отличающийся тем, что носитель содержит 2 мас.% металлического алюминия, причем носитель получен гидротермальной обработкой порошкообразного металлического алюминия с размером частиц 10÷500 нм в одну стадию в соотношении Al:H2O=1:17 при относительно низких температурах (20÷100°C) и атмосферном давлении в течение 15 мин (без предварительной подготовки материалов и без использования автоклавного оборудования) с последующей термической обработкой при температуре 95-700°C.

2. Способ получения катализатора дегидрирования парафиновых углеводородов, содержащего в своем составе оксиды хрома, калия и/или натрия, церия и/или цезия, и композитный алюминий-алюмооксидный носитель, включающий пропитку носителя водным раствором, содержащим растворимые соединения хрома, калия и/или натрия, церия и/или циркония с последующей сушкой при 95-120°C и прокалкой при 400-800°C в течение 4 ч, отличающийся тем, что носитель содержит 2 мас.% металлического алюминия и получен гидротермальной обработкой порошкообразного металлического алюминия с размером частиц 10÷500 нм в одну стадию в соотношении Al:H2O=1:17 при относительно низких температурах (20÷100°C) и атмосферном давлении в течение 15 мин (без предварительной подготовки материалов и без использования автоклавного оборудования) с последующей термической обработкой при температуре 95-700°C.

3. Способ дегидрирования парафиновых углеводородов в стационарном слое алюмохромового катализатора, отличающийся тем, что используют катализатор по пп. 1-2.

Документы, цитированные в отчете о поиске Патент 2017 года RU2622035C1

Пахомов Н.А
и др
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Серия Критические технологии
Мембраны, 2005, номер 4 (28), стр.80-83
Нестеров О.Н
Разработка технологии стабилизации фазового состава и структуры носителя алюмохромового катализатора дегидрирования изобутана: Автореферат диссертации, Казань, 2012, 21с
Способ получения нанокапсул биопага-Д в конжаковой камеди 2017
  • Кролевец Александр Александрович
RU2664451C1
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Борисова Т.В.
  • Качкин А.В.
  • Макаренко М.Г.
  • Мельникова О.М.
  • Сотников В.В.
RU2200143C1
Гильманов Х.Х
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Журнал Вестник Казанского технологического университета, выпуск 2, 2010.

RU 2 622 035 C1

Авторы

Зыкова Анна Петровна

Бугрова Татьяна Александровна

Мамонтов Григорий Владимирович

Даты

2017-06-09Публикация

2016-05-12Подача