Способ очистки алюминийсодержащих хлоридных растворов Российский патент 2017 года по МПК C01F7/62 C01F7/20 C22B3/10 

Описание патента на изобретение RU2625470C1

Изобретение относится к области цветной металлургии, в частности к электрохимической очистке алюминийсодержащего хлоридного раствора от железа.

Известен способ очистки алюминийсодержащего раствора, полученного после выщелачивания глиноземистой руды, содержащей примеси железа [SU 272182, опубл. 26.05.1970 г.]. Согласно данному способу выщелачивание проводят в автоклаве азотной кислотой, взятой в количестве от 50 до 90% от стехиометрически необходимого, при температуре 140-220°С, давлении 5,6-10,5 кг/см2, а также продолжительности 1-6 часов. Полученную реакционную массу из автоклава подвергают разбавлению, фильтрации, промывки нерастворенного осадка, который подлежит выбросу, при этом полученные фильтраты используют для получения глинозема.

Недостатками данного способа являются:

- сложность исполнения аппаратурно-технологической схемы процесса, поскольку выщелачивание проводится в агрессивной среде и при высокой температуре;

- образование нерастворимых кремнеземных осадков, требующих дальнейшей переработки.

Известен способ очистки алюминийсодержащего раствора азотной кислотой, осуществляемый путем добавления к раствору двухосновного нитрата алюминия с целью нейтрализации избытка кислоты и выделения гидроксида железа в виде осадка, который подвергается дальнейшей фильтрации [RU 2202516, опубл. 20.04.2003 г.].

Недостатками данного способа являются:

- необходимость приготовления суспензии двухосновного нитрата алюминия Al(OH)2NO3, а также ее дробного добавления в раствор азотнокислых солей, что в свою очередь не позволяет проводить процесс осаждения железа в динамическом режиме;

- повышенный расход кислоты для нейтрализации и выделения гидроксида железа.

Наиболее близким к заявленному способу является способ очистки алюминийсодержащих хлоридных растворов алюминия от примесей железа [SU 40967, опубл. 31.01.1935 г.]. Прокаленные при температуре 500-700°С каолиновые глины, содержащие в качестве основной примеси соединения железа, обрабатывают соляной кислотой. В кислый раствор добавляют металлический алюминий. Поскольку алюминий имеет большее химическое сродство к хлору, по сравнению с железом, то последнее вытесняется алюминием из раствора. Для предотвращения совместного выделения в осадок железа и гексагидрата хлорида алюминия в реактор опускают два электрода и включают постоянный ток. При этом возникающее электромагнитное поле ориентирует движение металлических частиц железа в сторону катода. Аппарат имеет вид длинного желоба, в который с одного конца непрерывно подают загрязненный раствор, а с другого - выводят очищенный от примеси железа. Основными недостатками данного способа являются:

- низкая степень очистки алюминийсодержащего раствора от железа, за счет одностадийности процесса;

- недостаточная эффективность процесса (низкий выход по току), за счет отсутствия регламентированных показателей кислотности процесса;

- высокий расход электроэнергии, что связано с возможностью пассивации электродов, а также с малой электропроводностью раствора при низких температурах.

Техническим результатом предлагаемого изобретения является повышение степени очистки алюминийсодержащего раствора от железа с одновременным повышением эффективности процесса, а также снижение расхода электроэнергии.

Указанный технический результат достигается тем, что способ очистки алюминийсодержащих хлоридных растворов от железа проводят по крайней мере в один этап электрохимической очистки алюминийсодержащих хлоридных растворов при рН 1,0-3,0, катодной плотности тока 0,001-0,150 А/см2 и анодной плотности тока 0,015-0,200 А/см2, при этом температура процесса составляет 20-97°С.

При этом пропускание тока через алюминийсодержащие хлоридные растворы осуществляется с помощью стального катода и алюминиевого анода.

Помимо этого, проведение электрохимической очистки алюминийсодержащих хлоридных растворов возможно в пять этапов со ступенчатым уменьшением катодной плотности тока с 0,150 до 0,001 А/см2 при разнице в плотностях тока 0,002-0,07 А/см2 от этапа к этапу.

Также проведение электрохимической очистки алюминийсодержащих хлоридных растворов возможно по крайней мере в два этапа с предварительным нагреванием алюминийсодержащего хлоридного раствора до 90-97°С и последующем поддержании температуры процесса от этапа к этапу.

Кислотность хлоридного раствора, содержащего алюминий, железо, хром и другие примеси, поддерживают в интервале рН 1,0-3,0. При этом значительное увеличение концентрации соляной кислоты в растворе со снижением pH менее 1,0 приводит к резкому снижению выхода по току. С другой стороны, снижение концентрации кислоты с увеличением pH более 3,0, также недопустимо из-за начала гидролиза с выделением в осадок оксихлорида алюминия. Поэтому pH алюминийсодержащих хлоридных растворов поддерживают в пределах 1,0-3,0.

Алюминийсодержащий хлоридный раствор подвергают электролизу при катодной плотности тока 0,001-0,150 А/см2 и температуре процесса 20-97°С. Неизбежным при ведении процесса электролиза является одновременное выделение на катоде железа и водорода. При этом значительное влияние на совместное выделение железа и водорода на катоде оказывает температура. При низких температурах, менее 20°С, скорость разряда ионов железа превышает скорость разряда ионов водорода только при низких плотностях тока, менее 0,001 А/см2. Таким образом, для обеспечения приемлемого выхода по току при плотностях тока 0,001-0,150 А/см2 температуру электролита необходимо поддерживать в пределах 20-97°С. Такой интервал температур обусловлен тем, что при температуре ниже 20°С электропроводность раствора будет низкой, а следовательно, будет увеличиваться расход электроэнергии, а при температуре более 97°С будет происходить выпаривание раствора, что в свою очередь сильно затруднит ведение процесса.

Наибольшая эффективность процесса достигается при температурах 90-97°С, поскольку при данных температурах достигается наибольший выход по току, что определяет количество выделяемого железа из алюминийсодержащего раствора. Температура алюминийсодержащего раствора зависит от температуры выщелачивания алюминийсодержащего сырья соляной кислотой. Как правило, в кислотных способах получения глинозема, температура передела выщелачивания составляет более 150°С. При моментальной подаче алюминийсодержащего хлоридного раствора на электрохимическую очистку, температура процесса будет соответствовать интервалу 90-97°С, соответственно при длительном хранении температура алюминийсодержащего хлоридного раствора может снижаться до 20°С. Для достижения максимальной эффективности процесса, температуру раствора необходимо поддерживать от этапа к этапу, в случае, если электрохимическая очистка проводится в несколько этапов. Проведение электрохимической очистки в один этап лучше всего осуществлять сразу после передела выщелачивания алюминийсодержащего сырья соляной кислотой, однако в зависимости от объема раствора и продолжительности процесса электрохимической очистки, температура раствора может снижаться до 20°С.

В качестве материала катода используют сталь, а для анода - алюминий. Перенапряжение водорода на железе является высоким и достигает - 0,8 В, что выше стандартного электродного потенциала железа, который составляет - 0,44 В. Это приводит к выделению на катоде железа совместно с водородом. Причем предельный ток выделения железа зависит от концентрации металла в растворе, а ток, расходуемый на выделение водорода, регулируется и влияет на выход по току. Процесс выделения железа возможен даже при очень низком содержании ионов железа в соляном растворе.

В ходе процесса электрохимической очистки раствора используется расходуемый алюминиевый анод. Преимущество растворяющегося алюминиевого анода заключается в том, что в процессе электролиза не происходит загрязнение конечного продукта нежелательными элементами.

Процесс электрохимического выделения железа из хлоридного раствора проводят при анодной плотности тока 0,015-0,200 А/см2. Снижение анодной плотности тока ниже 0,015 А/см2 приводит к частичной пассивации поверхности анода хлоридом алюминия с адсорбированными на нем продуктами катодного восстановления и, как следствие, к росту поляризации. Во время электрохимической очистки реальная анодная плотность тока будет расти за счет уменьшения площади поверхности анода и при достижении 0,2 А/см2 на аноде начнет выделяться кислород. При этом напряжение на ванне и расход электроэнергии увеличиваются.

Постоянный ток, проходящий при электрохимической очистки через хлоридный раствор, уменьшается. При этом катодная плотность тока падает ступенчато с 0,150 до 0,001 А/см2 за пять этапов. Предельный ток восстановления железа, показывающий при какой плотности тока необходимо вести процесс электролиза для достижения максимально возможного выхода по току, зависит от концентрации ионов железа в алюминийсодержащих хлоридных растворах. При этом в процессе очистки хлоридного раствора концентрация железа в нем постоянно уменьшается, что приводит к уменьшению значения предельного тока и, как следствие, к снижению выхода по току. Для поддержания оптимальных параметров процесса очистки необходимо снижать плотность тока с 0,150 до 0,001 А/см2 за пять этапов. Уменьшение количества этапов снижения установочной катодной плотности тока менее пяти экономически не целесообразно, за счет уменьшения доли тока расходуемого на восстановление железа, а увеличение более пяти - из-за роста затрат на установку дополнительных электрохимических ячеек.

Каждый этап электрохимической очистки осуществляется в отдельной, независимой, расположенной последовательно по ходу движения раствора электрохимической ячейке, с разницей в плотностях тока 0,002-0,07 А/см2. Каскадная схема расположения электрохимических ячеек позволяет точно регулировать подачу тока на электролизеры по экспоненциальному закону, например при помощи ряда Тейлора. В результате такого подхода продолжительность эксплуатации всех ячеек будет одинаковой, а потери тока, идущего на выделения железа, и электроэнергии минимальны. Величина плотности тока в различных ячейках может отличаться между собой, но не менее, чем на 0,002 А/см2. Уменьшение плотности тока ниже 0,002 А/см2 приведет к увеличению числа электрохимических ячеек и как следствие к дополнительным затратам. При этом необходимо учитывать, что значительное увеличение плотности тока, более 0,07 А/см2, приведет к потерям тока. Выход по току электрохимической очистки алюминийсодержащих хлоридных растворов, при интервале катодной плотности тока 0,001-0,150 А/см2, составляет от 75 до 97% при удельном расходе электроэнергии 800-1500 кВт⋅ч/т.

По окончании процесса электрохимической очистки алюминийсодержащих хлоридных растворов, возможно высаливание раствора с помощью соляной кислоты и с получением кристаллов AlCl3⋅6Н2О, которые в дальнейшем могут быть использованы для получения металлургического глинозема.

Пример осуществления изобретения

Для исследования использовали растворы объемом 100 мл, полученные после растворения бемит-каолинитовых бокситов Североонежского месторождения (Архангельская область) раствором 20% HCl. Выщелачивание исходного сырья проводили при непрерывном перемешивании в круглодонной колбе при температуре 110°С в течение 3 часов. Полученный раствор имел следующий состав (% по массе): Al - 1,150; Fe - 0,550; Cr - 0,055.

Алюминийсодержащий хлоридный раствор подвергали электрохимической очистке на лабораторной установке, включающей в себя электрохимическую ячейку емкостью 1,5 л и два соосных сосуда, между которыми находилась разделительная диафрагма. В сосуды опускались электроды, выполняющие функции катода и анода. В качестве катода использовался набор стальных мотков с заданной площадью поверхностью. Поверхность одного мотка - 200 см2. Анод был изготовлен из алюминиевой фольги. Расстояние между электродами составляло 2 см. Электроды перед и после проведения опыта промывали и взвешивали.

Алюминийсодержащий хлоридный раствор вводили в центральное катодное пространство ячейки (зона очищения), а удаляли из анодного пространства. Сила тока при проведении электрохимической очистки не превышала 20 А. Контроль параметров процесса осуществляли с помощью вольтметра, pH-метра, контактного термометра и аналитических весов. Остаточное содержание железа в растворе определяли с помощью спектрального анализатора.

Полученные результаты представлены в таблице 1.

Похожие патенты RU2625470C1

название год авторы номер документа
Способ получения глинозема, преимущественно из высококремнистого боксита 2022
  • Валеев Дмитрий Вадимович
  • Шопперт Андрей Андреевич
RU2801847C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА МАРГАНЦА 2000
  • Птицын А.Н.
  • Галкова Л.И.
  • Ледвий В.В.
  • Добышев Б.В.
  • Скопов С.В.
RU2172791C1
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ 2000
  • Антонов А.А.
  • Морозов А.В.
  • Крыщенко К.И.
RU2198947C2
СПОСОБ ИЗВЛЕЧЕНИЯ ГАЛЛИЯ ИЗ ГАЛЛИЙСОДЕРЖАЩИХ ШЛАМОВ 1990
  • Сергеев Г.И.
  • Балакин С.М.
  • Радионов Б.К.
  • Зинченко Л.И.
RU2037547C1
Способ рециклинга алюминия электролизом расплава его лома и устройство для осуществления этого способа 2022
  • Фурсенко Владислав Владимирович
  • Лербаум Валерия Владимировна
  • Анисимова Алла Юрьевна
  • Анисимов Дмитрий Олегович
RU2796566C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТНОГО НИКЕЛЯ 2005
  • Демидов Константин Александрович
  • Беседовский Сергей Григорьевич
  • Шелестов Николай Алексеевич
  • Хомченко Олег Александрович
  • Садовская Галина Ивановна
  • Жиличкин Сергей Иванович
RU2303086C2
Способ получения хлорида никеля 2019
  • Касиков Александр Георгиевич
  • Кшуманева Елена Сергеевна
  • Соколов Артем Юрьевич
RU2711068C1
СПОСОБ ПЕРЕРАБОТКИ ВТОРИЧНОГО ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ В ЧИСТОЕ ЗОЛОТО (ВАРИАНТЫ) 2001
  • Дороничева Л.А.
  • Дзегиленок В.Н.
  • Крыщенко К.И.
  • Буланов В.В.
  • Леньшин И.Д.
  • Тертичный А.И.
  • Обрезумов В.П.
  • Нейланд А.Б.
  • Никольский А.А.
  • Крыщенко И.К.
  • Буланов Ю.В.
  • Воронцов А.А.
  • Соснер Е.М.
  • Кутепов А.Н.
RU2176279C1
Способ плазмоэлектрохимической переработки графита из использованных литий-ионных аккумуляторов 2023
  • Белецкий Евгений Всеволодович
  • Левин Олег Владиславович
RU2825576C1
ОБРАБОТКА ТИТАНОВЫХ РУД 2010
  • Фрай, Дерек Дж.
  • Цзяо, Шуцян
RU2518839C2

Реферат патента 2017 года Способ очистки алюминийсодержащих хлоридных растворов

Изобретение может быть использовано в химической промышленности. Способ очистки алюминийсодержащих хлоридных растворов от железа включает по крайней мере один этап электрохимической очистки алюминийсодержащих хлоридных растворов. Электрохимическую очистку проводят при рН 1,0-3,0, катодной плотности тока 0,001-0,150 А/см2 и анодной плотности тока 0,015-0,200 А/см2. При этом температура процесса составляет 20-97°С. Изобретение позволяет повысить степень очистки алюминийсодержащих хлоридных растворов от железа, повысить эффективность процесса и снизить расход электроэнергии. 3 з.п. ф-лы, 1 табл., 1 пр.

Формула изобретения RU 2 625 470 C1

1. Способ очистки алюминийсодержащих хлоридных растворов от железа, включающий по крайней мере один этап электрохимической очистки алюминийсодержащих хлоридных растворов при рН 1,0-3,0, катодной плотности тока 0,001-0,150 А/см2 и анодной плотности тока 0,015-0,200 А/см2, при этом температура процесса составляет 20-97°С.

2. Способ по п. 1, отличающийся тем, что пропускание тока через алюминийсодержащие хлоридные растворы осуществляется с помощью стального катода и алюминиевого анода.

3. Способ по п. 1, отличающийся тем, что электрохимическую очистку алюминийсодержащих хлоридных растворов проводят в пять этапов со ступенчатым уменьшением катодной плотности тока с 0,150 до 0,001 А/см2 при разнице в плотностях тока 0,002-0,07 А/см2 от этапа к этапу.

4. Способ по п. 1, отличающийся тем, что электрохимическую очистку алюминийсодержащих хлоридных растворов проводят по крайней мере в два этапа с предварительным нагреванием алюминийсодержащего хлоридного раствора до 90-97°С и последующем поддержании температуры процесса от этапа к этапу.

Документы, цитированные в отчете о поиске Патент 2017 года RU2625470C1

СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ АЛЮМОСИЛИКАТНОГО СЫРЬЯ 2007
  • Космухамбетов Александр Равильевич
  • Каниев Берик Сералыулы
RU2373152C2
Способ очистки алюминиевых солей сернокислых, хлористых и иных от примесей железа и других металлов 1932
  • Степачев Ф.С.
SU32488A1
US 3254948 A, 07.06.1966
CN 105347380 A, 24.02.2016
CN 105016368 A, 04.11.2015.

RU 2 625 470 C1

Авторы

Лысенко Андрей Павлович

Киров Сергей Сергеевич

Тарасов Вадим Петрович

Наливайко Антон Юрьевич

Кондратьева Елена Сергеевна

Даты

2017-07-14Публикация

2016-06-23Подача