Способ термомеханической обработки микролегированных сталей Российский патент 2017 года по МПК C21D8/00 

Описание патента на изобретение RU2627715C1

Изобретение относится к области термомеханической обработке (ТМО) микролегированных сталей и может быть использовано в металлургии и машиностроении.

Известны способы термомеханической обработки сталей, позволяющие повысить комплекс механических свойств изделий [Гуляев А.П. Металловедение. - Рипол Классик, 1986; Бернштейн М.Л. Термомеханическая обработка металлов и сплавов. - 1968]. Для этого заготовку нагревают до температуры аустенитизации, затем пластически деформируют в определенном температурном диапазоне, далее проводят закалку и отпуск. Однако этот способ не гарантирует получение однородной ультрамелкозернистой феррито-перлитной структуры металла с высоким комплексом механических свойств у микролегированных сталей, кроме того, указанный способ имеет много технологических операций, что делает его очень энергозатратным.

Наиболее близким, выбранным за прототип, является способ термомеханической обработки стальных изделий [RU 2060282 С1 от 20.05.1996]. Способ включает следующие операции:

- нагрев со скоростью выше 50°С/с до температур от Аc1 до Ас3+200°С,

- деформацию прокаткой со степенью 45-80%,

- для доэвтектоидных сталей деформацию ведут при температуре конца прокатки выше межкритического интервала, а для эвтектоидных и заэвтектоидных сталей - выше Ar1,

- ускоренное охлаждение осуществляют с получением мартенситной структуры или продуктов распада аустенита,

- отпуск изделий проводят путем одно- или многократного циклического скоростного нагрева.

Недостатками способа являются: не получить у микролегированных сталей однородной ультрамелкозернистой феррито-перлитной структуры металла с высоким комплексом механических свойств, скорость нагрева заготовки выше 50°С/с недостижима при нагреве крупногабаритных слябов при листовой прокатке, степень деформации выше 50% недостижима при горячей прокатке толстого листа на широкополосных станах, большое количество технологических операций приводит к большим временным и энергозатратам.

Технической проблемой является получение микролегированных сталей с однородной ультрамелкозернистой феррито-перлитной структурой с высоким комплексом механических свойств при сокращении времени обработки и уменьшении энергозатрат.

Для решения проблемы предложен способ термомеханической обработки микролегированных сталей, включающий следующие операции:

- нагрев заготовки со скоростью от 0,01 до 50°С/с до температур Ас3±15°С (Ас3 - температура конца превращения феррита→аустенит);

- единичную деформацию со степенью 40-50% или две деформации по 20-30% с междеформационной паузой не более 5 с при температуре Ас3±15°С и скоростью деформации 0,1-50 с-1;

- последующее охлаждение, например, на воздухе или в воду до комнатной температуры.

Нагрев металла со скорость от 0,01 до 50°С/с до температуры Ас3±15°С приводит к образованию мелкого зерна аустенита при полиморфном превращении феррит→аустенит, а единичная деформация со степенью 40-50% или две деформации по 20-30% с междеформационной паузой не более 5 с, которой не достаточно для протекания процессов разупрочнения, именно при температуре Ас3±15°С и скоростью деформации 0,1-50 с-1 приводит к значительному накоплению деформационного упрочнения (упругой энергии дефектов кристаллического строения) во время пластической деформации за счет скачка модуля упругости у железа и сталей при температуре Ас3±15°С, что значительно увеличивает количество центров зарождения при фазовом превращении во время охлаждения, что в совокупности приводит к формированию в микролегированных сталях однородной ультрамелкозернистой феррито-перлитную структуры металла с высоким комплекс механических свойств: пределом текучести σт, временным сопротивлением σв и относительным удлинением δ5. Высокий уровень механических свойств сталей напрямую связан с их структурным состоянием и, как и структура, зависит от температуры, степени и скорости деформации, накопленной деформации. Таким образом, совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.

Пример 1. Термомеханическую обработку проводили на микролегированной стали 17Г1С-У. Образцы нагревали до температуры Т=910°С со скоростью 0,01°С/с, далее металл деформировали прокаткой за два прохода со степенью деформации в каждом 20%, 25%, 30% соответственно и скоростью деформации с-1, с-1, с-1 соответственно, время паузы между проходами составляло 2 с, 3 с и 5 с соответственно, температура конца прокатки составила Т=900°С. После деформационное охлаждение проводили на воздухе до комнатной температуры. В результате выполненной ТМО в прокатанном металле сформировалась однородная ультрамелкозернистая феррито-перлитная структура со средним размером зерна феррита 5-6 мкм (фиг. 1) и комплексом свойств, соответствующим требованиям по классу прочности 390 согласно ГОСТ 19281-2014 «Прокат повышенной прочности» при значительно более высокой пластичности: σт=406 МПа, σв=518 МПа, δ5=35%.

Пример 2. Термомеханическую обработку проводили на микролегированной стали 17Г1С-У. Образцы нагревали до температуры Т=915°С со скоростью 50°С/с, далее деформировали прокаткой со степенью деформации ε=40% и 50% за один проход и скоростью деформации с-1, с-1, с-1 соответственно, время паузы между проходами составило 2 с, 3 с и 5 с соответственно, температура конца прокатки составила Т=905°С. Последеформационное охлаждение проводили на воздухе до комнатной температуры. В результате выполненной ТМО также сформировалась однородная ультрамелкозернистая феррито-перлитная структура металла со средним размером зерна 5-6 мкм (фиг.2) и комплексом свойств, соответствующим требованиям по классу прочности 390 согласно ГОСТ 19281-2014 «Прокат повышенной прочности» при значительно более высокой пластичности: σт=418 МПа, σв=522 МПа, δ5=39%.

Пример 3. Обработку осуществляли так же, как в примере 2, однако нагрев образца проводили со скоростью 1°С/с, а последеформационное охлаждение проводили в воду до комнатной температуры для увеличения дисперсности второй фазы. В результате выполненной ТМО сформировалась ультрамелкозернистая феррито-перлитная структура металла, со средним размером зерна 5 мкм (фиг. 3), ускоренное охлаждение привело к увеличению дисперсности второй фазы. Механические свойства полученного проката: σт=418 МПа, σв=601 МПа, δ5=26%.

На примере горячей прокатки показано, что из исходно литой структуры металла после проведения предлагаемого способа ТМО получена однородная ферритно-перлитная структура со средним размером зерна феррита ~5-6 мкм и высоким комплексом механических свойств. По сравнению с прототипом в представленных условиях формируется средний размер зерен феррита в два раза меньше, уровень механических свойств на 10-15% выше, кроме того, отсутствие дополнительной операции в виде отпуска сокращает время обработки и энергозатраты на производство продукции.

Таким образом, предлагаемый способ ТМО формирует ультрамелкозернистую структуру металла, значительно повышает уровень механических свойств микролегированных сталей, сокращает время и уменьшает энергозатраты на обработку. Указанный способ ТМО может применяться для любых процессов обработки металлов давлением, например прокатки, ковки, штамповки, волочения и др., и в особенности может быть рекомендован для применения на совмещенных литейно-прокатных комплексах.

Похожие патенты RU2627715C1

название год авторы номер документа
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ 2019
  • Хотинов Владислав Альфредович
  • Фарбер Владимир Михайлович
  • Полухина Ольга Николаевна
  • Морозова Анна Николаевна
  • Селиванова Ольга Владимировна
  • Щапов Геннадий Валерьевич
RU2735308C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОС 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2350412C2
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2350413C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ ТРУБНОЙ СТАЛИ КЛАССА ПРОЧНОСТИ К60 2011
  • Денисов Сергей Владимирович
  • Голубчик Эдуард Михайлович
  • Смирнов Павел Николаевич
  • Стеканов Павел Александрович
RU2465345C1
СПОСОБ КОМБИНИРОВАННОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ПРОКАТА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ 2008
  • Замотаев Борис Николаевич
  • Гурьянов Дмитрий Александрович
  • Рубежанская Ирина Владимировна
RU2373293C1
СПОСОБ ПРОИЗВОДСТВА АРМАТУРНЫХ ПЕРИОДИЧЕСКИХ ПРОФИЛЕЙ 2002
  • Морозов С.А.
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Бердичевский Ю.Е.
  • Воронков С.Н.
  • Аникеев С.Н.
RU2222611C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ПОЛОСЫ ТРУБНЫХ МАРОК СТАЛИ 2008
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2393933C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ ТРУБНОЙ СТАЛИ КЛАССА ПРОЧНОСТИ К60 2011
  • Денисов Сергей Владимирович
  • Голубчик Эдуард Михайлович
  • Смирнов Павел Николаевич
  • Кравченко Павел Александрович
RU2465344C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ ТРУБНОЙ СТАЛИ КЛАССА ПРОЧНОСТИ К60 2012
  • Денисов Сергей Владимирович
  • Голубчик Эдуард Михайлович
  • Смирнов Павел Николаевич
  • Стеканов Павел Александрович
RU2479638C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОГО ШТРИПСА ДЛЯ ТРУБ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2011
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
  • Малахов Николай Викторович
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Орлов Виктор Валерьевич
  • Сыч Ольга Васильевна
  • Милейковский Андрей Борисович
RU2465346C1

Иллюстрации к изобретению RU 2 627 715 C1

Реферат патента 2017 года Способ термомеханической обработки микролегированных сталей

Изобретение относится к области металлургии. Для получения однородной ультромелкозернистой феррито-перлитной структуры с высоким комплексом механических свойств при сокращении времени обработки и энергозатрат способ включает нагрев заготовки со скоростью от 0,01 до 50°С/с до температур Ас3±15°С, единичную деформацию со степенью 40-50% или две деформации по 20-30% с междеформационной паузой не более 5 с при температуре Ас3±15°С и скоростью деформации 0,1-50 с-1, охлаждение. 3 пр.

Формула изобретения RU 2 627 715 C1

Способ термомеханической обработки заготовки из микролегированной стали, включающий нагрев заготовки до температуры аустенитизации и ее деформацию с последующим охлаждением, отличающийся тем, что нагрев заготовки проводят со скоростью от 0,01 до 50°C/с до температуры Ас3±15°C, а затем со скоростью деформации 0,1-50 с-1 проводят единичную деформацию со степенью 40-50% или две деформации по 20-30% с междеформационной паузой не более 5 с.

Документы, цитированные в отчете о поиске Патент 2017 года RU2627715C1

СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕГО ПРОКАТА ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ 2012
  • Денисов Сергей Владимирович
  • Корнилов Владимир Леонидович
  • Демидченко Юрий Павлович
  • Стеканов Павел Александрович
  • Шмаков Антон Владимирович
  • Горностырев Юрий Николаевич
  • Урцев Владимир Николаевич
  • Хабибулин Дим Маратович
  • Дегтярев Василий Николаевич
RU2519719C1
RU 2060282 C1, 20.05.1996
Способ изготовления проката из углеродистых и легированных сталей 1990
  • Вакуленко Игорь Алексеевич
SU1735391A1
Способ изготовления изделий из низколегированных сталей 1987
  • Гевлич Сергей Олегович
  • Липатова Ольга Викторовна
  • Сараджан Ирина Николаевна
  • Жуковская Ольга Владимировна
  • Никишова Ольга Викторовна
  • Глухова Леонила Ивановна
SU1479530A1
US 8685177 B2, 01.04.2014.

RU 2 627 715 C1

Авторы

Матвеев Михаил Александрович

Колбасников Николай Георгиевич

Мишин Василий Викторович

Даты

2017-08-10Публикация

2016-10-10Подача