ИЗНОСОУСТОЙЧИВАЯ ТОЛСТОЛИСТОВАЯ СТАЛЬ, ОБЛАДАЮЩАЯ ПРЕВОСХОДНОЙ НИЗКОТЕМПЕРАТУРНОЙ УДАРНОЙ ВЯЗКОСТЬЮ, И СПОСОБ ЕЕ ПРОИЗВОДСТВА Российский патент 2017 года по МПК C22C38/32 C21D6/00 C21D8/02 

Описание патента на изобретение RU2627830C2

Область техники

Настоящее изобретение относится к износоустойчивым толстолистовым сталям, обладающим превосходной низкотемпературной ударной вязкостью, и к способам производства таких толстолистовых сталей. В частности, изобретение относится к методике, подходящей для износоустойчивых толстолистовых сталей с превосходной низкотемпературной ударной вязкостью, имеющих твердость по Бринеллю равную 361 или более.

Уровень техники

В последние годы наблюдается тенденция к увеличению твердости толстолистовых сталей, которые применяются в области промышленного оборудования, работающего в абразивных средах, таких как шахтное оборудование, строительная техника, сельскохозяйственные машины и конструкции, с тем, чтобы, например, обеспечивать более длительное сохранение измельчающей способности при размалывании в порошок руд.

Однако увеличение твердости стали, как правило, сопровождается снижением низкотемпературной ударной вязкости и, следовательно, вызывает риск растрескивания стали в процессе применения. Таким образом, имеется устойчивый спрос на увеличение низкотемпературной ударной вязкости обладающих высокой твердостью износоустойчивых толстолистовых сталей, в частности износоустойчивых толстолистовых сталей, имеющих твердость по Бринеллю равную 361 или более.

В области техники были предложены разные подходы к получению износоустойчивых толстолистовых сталей с превосходной низкотемпературной ударной вязкостью и к способам производства таких толстолистовых сталей, такие, как например, раскрыты в патентных источниках 1, 2 и 3, где низкотемпературная ударная вязкость улучшается посредством оптимизации эквивалентного содержания углерода и индекса прокаливаемости.

Список цитированных документов

Патентные источники.

PTL 1 - публикация не прошедшей экспертизу патентной заявки Японии, №2002-256382.

PTL 2 - патент Японии №3698082.

PTL 3 - патент Японии №4238832.

Раскрытие изобретения

Техническая задача

Ударная вязкость по Шарпи при -40°C, которая устойчиво достигается с помощью стандартных способов, таких как описанные в патентных источниках 1, 2 и 3, имеет предел от около 50 до 100 Дж. Таким образом, имеется потребность в износоустойчивых толстолистовых сталях, имеющих высокую низкотемпературную ударную вязкость, и в способах, пригодных для производства таких толстолистовых сталей.

Настоящее изобретение было сделано ввиду наличия в данной области техники описанных выше проблем. То есть цель данного изобретения состоит в создании износоустойчивых толстолистовых сталей, которые имеют твердость по Бринеллю равную 361 или более и, тем не менее, демонстрируют низкотемпературную ударную вязкость, превосходящую этот показатель у стандартных износоустойчивых толстолистовых сталей, и в создании способов производства таких толстолистовых сталей.

Сущность изобретения

Решение задачи

Три основных качественных принципа проектирования для увеличении низкотемпературной ударной вязкости стали со структурой реечного мартенсита в состоянии после закалки состоят в уменьшении величины большеугловых границ зерна, которые обычно определяют размеры фасеток на поверхности излома, в снижении количества таких примесей, как фосфор и сера, которые уменьшают прочность связи на границах зерна, и в уменьшении размера и количества включений, вызывающих низкотемпературную хрупкость.

Авторы настоящего изобретения выполнили обширные исследования, направленные на усиление низкотемпературной ударной вязкости износоустойчивых толстолистовых сталей, основываясь на вышеприведенной точке зрения. В результате авторы изобретения обнаружили, что огрубление повторно нагретых аустенитных зерен подавляется при диспергировании большого количества тонкодисперсных выделений, таких как карбонитрид Nb, имеющих диаметр не более 50 нм, и, следовательно, значительно уменьшающих размер пакетов, определяющих величину фасеток на поверхности излома, с тем, чтобы иметь возможность получения износоустойчивых толстолистовых сталей, имеющих более высокую низкотемпературную ударную вязкость, чем у стандартных материалов.

Настоящее изобретение было выполнено в результате дальнейших исследований, основывающихся на указанном выше обнаружении, и обеспечивает нижеописанные износоустойчивые толстолистовые стали, обладающие превосходной низкотемпературной ударной вязкостью, а также способы производства таких толстолистовых сталей.

(1) Износоустойчивая толстолистовая сталь с превосходной низкотемпературной ударной вязкостью, включающая, мас. %: C: от 0,10% до менее 0,20%, Si: от 0,05 до 0,5%, Mn: от 0,5 до 1,5%, Cr: от 0,05 до 1,20%, Nb: от 0,01 до 0,08%, B: от 0,0005 до 0,003%, Al: от 0,01 до 0,08%, N: от 0,0005 до 0,008%, P: не более 0,05%, S: не более 0,005%, и O: не более 0,008%, остальное Fe и неизбежные примеси, при этом данная толстолистовая сталь включает тонкодисперсные выделения диаметром 50 нм или менее с плотностью в 50 или более частиц на 100 мкм2, при этом данная толстолистовая сталь имеет структуру реечного мартенсита на глубине от поверхности толстолистовой стали до по меньшей мере 1/4 толщины пластины, при этом реечная мартенситная структура имеет средний размер зерна не более 20 мкм, где средний размер зерна представляет средний размер кристаллических зерен, окруженных большеугловыми границами зерен, имеющими различия в ориентации в 15° или более, и при этом данная то л сто листовая сталь имеет твердость по Бринеллю (HBW10/3000) равную 361 или более.

(2) Износоустойчивая толстолистовая сталь с превосходной низкотемпературной ударной вязкостью, описанная в (1), где сталь, кроме того, включает в мас.% один или два, или более из: Mo: не более 0,8%, V: не более 0,2% и Ti: не более 0,05%.

(3) Износоустойчивая толстолистовая сталь с превосходной низкотемпературной ударной вязкостью, описанная в (1) или (2), в которых химическая композиция стали, кроме того, включает, мас. %: один или два, или более из Nd: не более 1%, Сu; не более 1%, Ni: не более 1%, W: не более 1%, Ca: не более 0,005%, Mg: не более 0,005% и РЗМ: не более 0,02% (примечание: РЗМ является сокращением для редкоземельного металла).

(4) Износоустойчивая толстолистовая сталь с превосходной низкотемпературной ударной вязкостью, описанная в любом из (1)-(3), в которых содержания Nb, Ti, Al и V удовлетворяют условию 0,03≤Nb+Ti+Al+V≤0,14, где Nb, Ti, Al и V указывают соответствующие содержания (мас. %) и равны 0 в случаях, когда Nb, Ti, Al и V не добавляются.

(5) Износоустойчивая толстолистовая сталь с превосходной низкотемпературной ударной вязкостью, описанная в любом из (1)-(4), причем толщина пластины составляет от 6 до 125 мм.

(6). Износоустойчивая толстолистовая сталь, описанная в любом из (1)-(5), у которой ударная вязкость по Шарпи при -40°C составляет не менее 27 Дж.

(7) Способ производства износоустойчивой толстолистовой стали с превосходной низкотемпературной ударной вязкостью, включающий литье стали, имеющей химическую композицию согласно описанной в любом из (1)-(4), горячую прокатку сляба в толстолистовую сталь, имеющую заданную толщину пластины, повторный нагрев толстолистовой стали до температуры фазового перехода Ac3 или выше и последующую закалку толстолистовой стали водяным охлаждением от температуры не ниже температуры фазового перехода Ar3 до температуры не выше 250°C.

(8) Способ производства износоустойчивой толстолистовой стали с превосходной низкотемпературной ударной вязкостью, описанный в (7), который дополнительно включает повторное нагревание отлитого сляба до 1100°C или выше.

(9) Способ производства износоустойчивой толстолистовой стали с превосходной низкотемпературной ударной вязкостью, описанный в (7) или (8), в котором обжатие в ходе горячей прокатки в нерекристаллизованной области составляет не менее 30%.

(10) Способ производства износоустойчивой толсто листовой стали с превосходной низкотемпературной ударной вязкостью, описанный в любом из (7)-(9), включающий, кроме того, охлаждение горячекатаной толстолистовой стали водяным охлаждением до температуры не выше 250°C.

(11) Способ производства износоустойчивой толстолистовой стали с превосходной низкотемпературной ударной вязкостью, описанный в любом из (7)-(10), в котором повторное нагревание горячекатаной или подвергнутой водяному охлаждению толстолистовой стали до температуры фазового перехода Ac3 или выше выполняют со скоростью не менее 1°C/с.

Полезный эффект изобретения

Износоустойчивые толстолистовые стали настоящего изобретения имеют твердость по Бринеллю равную 361 или более, и, тем не менее, демонстрируют превосходную низкотемпературную ударную вязкость, а способы по изобретению позволяют производить такие толстолистовые стали. Эти преимущества являются очень полезными для применения в промышленности.

Описание воплощений

Далее описываются причины, по которым в данном изобретении ограничивается микроструктура.

Износоустойчивая толстолистовая сталь настоящего изобретения включает сталь со структурой реечного мартенсита, имеющую микроструктуру, в которой область от поверхности толстолистовой стали до по меньшей мере глубины в 1/4 толщины пластины представляет собой структуру реечного мартенсита, а средний размер кристаллических зерен, окруженных большеугловыми границами зерна, имеющими различие в ориентации в 15° или более, не превышает 20 мкм, предпочтительно составляет не более 10 мкм и более предпочтительно не более 5 мкм.

Большеугловые зерна выступают в качестве мест локализации и накопления полос скольжения. Снижение размера большеугловых зерен исправляет ситуацию с концентрацией напряжений из-за накопления полос скольжения на границах зерна и, следовательно, снижает вероятность появления трещин из-за хрупкого разрушения, таким образом усиливая низкотемпературную ударную вязкость. Эффект усиления низкотемпературной ударной вязкости возрастает с уменьшением размера зерна. Заметное воздействие может быть достигнуто регулированием средней крупности кристаллических зерен, окруженных большеугловыми границами зерна с различиями в ориентации в 15° или более, до величины не выше 20 мкм. Средний размер зерна предпочтительно составляет не более 10 мкм и более предпочтительно не более 5 мкм.

Ориентации кристаллов могут быть оценены, например, по результатам анализа кристаллических ориентаций на участке в 100 квадратных микрон методом EBSP (угловое распределение обратно рассеянных электронов). В допущении, что большой угол относится к различию в ориентациях границ зерна в 15° или более, измеряются диаметры зерен, окруженных такими границами зерна, и определяется простое среднее полученных результатов.

В данном изобретении сталь включает тонкодисперсные выделения, имеющие диаметр не более 50 нм, предпочтительно не более 20 нм и более предпочтительно не более 10 нм с плотностью 50 или более частиц на 100 мкм2.

Главные тонкодисперсные выделения, для которых были подтверждены данные эффекты, представлены карбонитридами Nb, карбонитридами Ti, нитридами Al и карбидами V. Однако выделения не ограничиваются только ими при условии соответствия по размерам и могут включать другие формы, такие как оксиды. Тонкодисперсные выделения, имеющие меньший диаметр и более высокую плотность, обеспечивают более выраженные эффекты подавления укрупнения кристаллов благодаря их эффекту «пиннинга». Размер кристаллических зерен уменьшается, а низкотемпературная ударная вязкость увеличивается при условии присутствия на 100 мкм2 по меньшей мере 50 или более частиц тонкодисперсных выделений, имеющих диаметр не более 50 нм, предпочтительно не более 20 нм и более предпочтительно не более 10 нм.

Для определения среднего диаметра частиц тонкодисперсных выделений рассматривают и фотографируют с помощью ТЕМ (просвечивающая электронная микроскопия), например, образец для испытаний, приготовленный методом экстракционных углеродных реплик, изображение анализируют с целью измерения среднего диаметра 50 или более частиц тонкодисперсных выделений в виде простого среднего.

Для получения высоких показателей износоустойчивости твердость по Бринеллю должна равняться 361 или более. Толщина пластины составляет от 6 до 125 мм, что отвечает обычному диапазону толщин износоустойчивых толстолистовых сталей. Однако толщина пластины этим диапазоном не ограничивается и методика настоящего изобретения применима к толстолистовым сталям, имеющим другие толщины. Не всегда необходимо, чтобы структура толстолистовой стали полностью состояла из реечного мартенсита. В зависимости от применения структура реечного мартенсита может, например, продолжаться от поверхности толстолистовой стали до глубины 1/4 по толщине пластины, а другая область, продолжающаяся от 1/4 до 3/4 толщины пластины, может быть, например, структурой нижнего бейнита или структурой верхнего бейнита.

Предпочтительная химическая композиция и условия производства износоустойчивых толстолистовых сталей, имеющих вышеупомянутую микроструктуру, ограничиваются согласно описываемым ниже причинам.

Химическая композиция

Единицы % в данной химической композиции представляют, мас. %: C: от 0,10% до менее 0,20%.

Углерод добавляется для обеспечения твердости мартенсита и способности принимать закалку. Эти эффекты не проявляются в достаточной мере, если добавленное количество составляет менее 0,10%. С другой стороны, добавление углерода в количествах 0,20% или более приводит к снижению ударной вязкости основной стали и зоны термического воздействия при сварке, а также вызывает заметное ухудшение свариваемости. Таким образом, содержание С ограничивается величинами от 0,10% до менее 0,20%.

Si: от 0,05 до 0,5%.

Кремний в производстве стали добавляется в качестве раскислителя, а также в качестве элемента, обеспечивающего способность принимать закалку. Эти эффекты не проявляются в достаточной мере, если его добавленное количество составляет менее 0,05%. Если, с другой стороны, добавляется более 0,5% кремния, границы зерна охрупчиваются и низкотемпературная ударная вязкость падает. Таким образом, содержание Si ограничивается пределами от 0,05 до 0,50%.

Mn: от 0,5 до 1,5%.

Марганец добавляется в качестве элемента для обеспечения способности принимать закалку. Этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,5%. Если, с другой стороны, добавляется более 1,5% марганца, снижается прочность границ зерна и низкотемпературная ударная вязкость падает. Таким образом, содержание Mn ограничивается от 0,5 до 1,5%.

Cr: от 0,05 до 1,20%.

Хром добавляется в качестве элемента для обеспечения способности принимать закалку. Этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,05%. С другой стороны, добавление более 1,20% хрома приводит к ухудшению свариваемости. Таким образом, содержание Cr ограничивается пределами от 0,05 до 1,20%.

Nb: от 0,01 до 0,08%.

Ниобий образует карбонитриды Nb в форме тонкодисперсных выделений, которые способствуют закреплению нагретых аустенитных зерен и таким образом подавляют укрупнение зерна. Этот эффект не проявляется в достаточной мере при содержании Nb менее 0,01%. С другой стороны, добавление более 0,08% ниобия вызывает ухудшение ударной вязкости зон термического воздействия при сварке. Таким образом, содержание Nb ограничивается пределами от 0,01 до 0,08%.

B: от 0,0005 до 0,003%.

Бор добавляется в качестве элемента, обеспечивающего способность принимать закалку. Этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,0005%. Добавление более 0,003% бора вызывает ухудшение ударной вязкости. Таким образом, содержание В ограничивается от 0,0005% до 0,003%.

Al: от 0,01 до 0,08%.

Алюминий добавляется в качестве раскислителя и также образует нитриды Al в форме тонкодисперсных выделений, которые служат для закрепления нагретых аустенитных зерен и подавления, таким образом, укрупнения зерна. Кроме того, алюминий фиксирует свободный азот в виде нитридов Al и таким образом подавляет образование нитридов В, что позволяет свободному бору эффективно использоваться для повышения способности принимать закалку. Таким образом, наиболее важным в данном изобретении является контроль содержания Al. Необходимо включение алюминия в количествах 0,01% или более, поскольку указанные выше эффекты не обеспечиваются в достаточной мере, когда содержание Al оказывается ниже 0,01%. Предпочтительно рекомендуется добавление 0,02% или более алюминия и более предпочтительно 0,03% или более алюминия. С другой стороны, добавление алюминия свыше 0,08% увеличивает вероятность появления дефектов поверхности на толстолистовых сталях. Таким образом, содержание Al ограничивается пределами от 0,01 до 0,08%.

N: от 0,0005 до 0,008%.

Азот образует нитриды с такими элементами, как ниобий, титан и алюминий, в форме тонкодисперсных выделений, которые способствуют закреплению нагретых аустенитных зерен и подавления, таким образом, укрупнения зерна. Таким образом, азот добавляется для обеспечения эффекта повышения низкотемпературной ударной вязкости. Этот эффект утончения микроструктуры не обеспечивается в достаточной мере, если добавленное количество оказывается ниже 0,0005%. С другой стороны, если добавляется более 0,008% азота, количество растворенного азота увеличивается настолько, что снижаются ударная вязкость основной стали и зон термического воздействия при сварке. Таким образом, содержание N ограничивается от 0,0005 до 0,008%.

P: не более 0,05%.

Фосфор является загрязняющим элементом, легко выделяющимся на границах кристаллического зерна. Если содержание Р превышает 0,05%, прочность связывания между соседними кристаллическими зернами падает и уменьшается низкотемпературная ударная вязкость. Поэтому содержание Р ограничивается величиной не более 0,05%.

S: не более 0,005%.

Сера является загрязняющим элементом, легко выделяющимся на границах кристаллического зерна. Сера также имеет тенденцию образовывать MnS, который является неметаллическим включением. При добавлении серы в количествах, превышающих 0,005%, падает прочность связывания между соседними кристаллическими зернами и также увеличивается количество включений, приводящих к ухудшению низкотемпературной ударной вязкости. Таким образом, содержание S ограничивается величиной не более 0,005%.

O: не более 0,008%.

Кислород влияет на обрабатываемость стали через образование оксидов с такими элементами, как алюминий. Если добавляется более 0,008% кислорода, обрабатываемость ухудшается вследствие увеличения количества включений. Поэтому содержание O ограничивается величиной не более 0,008%.

Износоустойчивая толстолистовая сталь изобретения состоит из основных описанных выше компонентов и остальное составляет Fe и неизбежные примеси.

В данном изобретении в соответствии с требуемыми особенностями могут дополнительно добавляться следующие компоненты.

Mo: не более 0,8%.

Молибден обладает эффектом усиления способности принимать закалку. Однако этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,05%. Поэтому предпочтительно добавление 0,05% или более молибдена. При добавлении более 0,8% молибдена ухудшается экономическая эффективность. Поэтому содержание молибдена, в случае его добавления, ограничивается величиной не более 0,8%.

V: не более 0,2%.

Ванадий обладает эффектом усиления способности принимать закалку, а также образует карбиды V в форме тонкодисперсных выделений, которые способствуют закреплению нагретых аустенитных зерен и подавлению, таким образом, укрупнения зерна. Эти эффекты не проявляются в достаточной мере, если его добавленное количество составляет менее 0,005%. Поэтому предпочтительно добавление 0,005% или более ванадия. С другой стороны, добавление более 0,2% ванадия приводит к ухудшению ударной вязкости зон термического воздействия при сварке. Поэтому содержание ванадия в случае его добавления ограничивается величиной не более 0,2%.

Ti: не более 0,05%.

Титан образует карбонитриды Ti в форме тонкодисперсных выделений, которые способствуют закреплению нагретых аустенитных зерен и, таким образом, подавляют рост зерна. Кроме того, титан связывает свободный азот в виде нитридов Ti и, таким образом, подавляет образование нитридов В, что позволяет свободному бору эффективно использоваться для повышения способности принимать закалку. Однако эти эффекты не проявляются в достаточной мере, если его добавленное количество составляет менее 0,005%. Поэтому предпочтительно добавление 0,005% или более титана. С другой стороны, добавление более 0,05% титана приводит к ухудшению ударной вязкости зон термического воздействия при сварке. Поэтому содержание титана в случае его добавления ограничивается величиной не более 0,05%.

Nd: не более 1%.

Неодим уменьшает количество серы, выделяющейся на границах зерен, посредством внедрения серы в форме включений и таким образом увеличивает низкотемпературную ударную вязкость. Однако эти эффекты не проявляются в достаточной мере, если его добавленное количество составляет менее 0,005%. Поэтому предпочтительно добавление неодима в количестве 0,005% или более. С другой стороны, добавление более 1% неодима приводит к ухудшению ударной вязкости зон термического воздействия при сварке. Таким образом, содержание неодима в случае его добавления ограничивается величиной не более 1%.

Cu: не более 1%.

Медь обладает эффектом усиления способности принимать закалку. Однако этот эффект не проявляется в достаточной мере, если ее добавленное количество составляет менее 0,05%. Поэтому предпочтительно добавление 0,05% или более меди. Если, однако, содержание Cu превышает 1%, проявляется тенденция к образованию горячих трещин в процессе нагревания сляба и при сварке. Таким образом, содержание меди в случае ее добавления ограничивается величиной не более 1%.

Ni: не более 1%.

Никель обладает эффектом усиления ударной вязкости и способности принимать закалку. Однако этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,05%. Поэтому предпочтительно добавление 0,05% или более никеля. Если, однако, содержание Ni превышает 1%, падает экономическая эффективность. Таким образом, содержание никеля в случае его добавления ограничивается величиной не более 1%.

W: не более 1%.

Вольфрам обладает эффектом усиления способности принимать закалку. Этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,05%. Поэтому предпочтительно добавление 0,05% или более вольфрама. Однако добавление более 1% вольфрама вызывает ухудшение свариваемости. Таким образом, содержание вольфрама в случае его добавления ограничивается величиной не более 1%.

Ca: не более 0,005%.

Кальций проявляет эффект регулирования формы сульфидных включений в виде CaS, который является сферическим включением, слабо поддающимся вытяжке при прокатке, вместо MnS, который является формой включения, легко поддающегося вытяжке при прокатке. Однако этот эффект не проявляется в достаточной мере, если его добавленное количество составляет менее 0,0005%. Поэтому предпочтительно добавление 0,0005% или более кальция. Однако добавление более 0,005% кальция уменьшает чистоту и приводит к ухудшению качества, например, к падению ударной вязкости. Таким образом, содержание кальция в случае его добавления ограничивается величиной не более 0,005%.

Mg: не более 0,005%.

Магний иногда добавляется в качестве десульфуратора для горячего металла. Однако его эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,0005%. Поэтому предпочтительно добавление 0,0005% или более магния. Однако добавление более 0,005% магния вызывает ухудшение чистоты. Таким образом, количества магния в случае его добавления ограничивается величиной не более 0,005%.

РЗМ: не более 0,02%.

Редкоземельные металлы образуют в стали оксисульфиды РЗМ (О, S) и таким образом уменьшают количество растворенной на границах кристаллических зерен серы с обеспечением улучшенных характеристик SR сопротивления растрескиванию. Однако этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,0005%. Поэтому предпочтительно добавление 0,0005% или более редкоземельных металлов. Однако добавление более 0,02% редкоземельных металлов приводит к чрезмерному развитию сульфидов РЗМ в зонах седиментации и вызывает снижение качества. Таким образом, количества редкоземельных металлов в случае их добавления ограничивается величиной не более 0,02%.

0,03≤Nb+Ti+Al+V≤0,14.

Ниобий, титан, алюминий и ванадий образуют карбонитриды Nb, карбонитриды Ti, нитриды Al и карбиды V в форме тонкодисперсных выделений, которые способствуют закреплению нагретых аустенитных зерен и, таким образом, подавлению укрупнения зерна. Детализированные исследования зависимости между содержаниями этих элементов и размером зерна показали, что достигается заметное снижение размеров кристаллического зерна и обеспечивается повышение низкотемпературной ударной вязкости, когда содержания удовлетворяют условию 0,03≤Nb+Ti+Al+V≤0,14. Таким образом, содержания ограничиваются соотношением 0,03≤Nb+Ti+Al+V≤0,14. Здесь Nb, Ti, Al и V представляет собой соответствующие содержания (мас. %) и равны 0, когда эти элементы отсутствуют.

Производственные режимы

Формы износоустойчивых толстолистовых сталей изобретения не ограничиваются стальными пластинами и могут быть представлены любой другой из различных форм, таких как трубы, сортовые профильные стали и прутковые стали. Температура и скорость нагревания, определенные в производственных режимах, являются параметрами, описывающими центральную область стали, а именно, центр по толщине пластины из толстолистовой стали, центр по толщине пластины участка сортовой профильной стали, которым придаются особенности изобретения, или же центр в радиальном направлении прутковой стали. При этом участки в окрестности центральной области подвергаются по существу такой же термической истории и, таким образом, указанные выше параметры не описывают температурные условия строго для точного центра.

Условия разливки металла

Настоящее изобретение эффективно для сталей, полученных с помощью любых условий разливки. Поэтому нет необходимости в установлении специальных ограничений на условия разливки. То есть разливка расплавленной стали и прокатка стального литья в слябы могут выполняться любыми способами без ограничений. Могут применяться стали, выплавленные такими способами, как конвертерный процесс производства стали или способ получения стали в электропечах, и слябы, полученные такими способами, как непрерывная разливка или разливка в слитки.

Повторный нагрев и упрочнение закалкой

Толстолистовая сталь, которая была подвергнута горячей прокатке до заданной толщины листа, повторно нагревается до температуры Ac3 фазового перехода или выше и впоследствии закаливается водяным охлаждением от температуры не ниже температуры фазового перехода Ar3 до температуры не выше 250°C, образуя, таким образом, структуру реечного мартенсита.

Если температура повторного нагрева ниже температуры фазового перехода Ac3, часть феррита остается непреобразованной и, следовательно, последующее водяное охлаждение не позволяет достигнуть целевой твердости. Если температура перед водяным охлаждением опускается ниже температуры Ar3 фазового перехода, часть аустенита претерпевает преобразование перед водяным охлаждением и, следовательно, последующее водяное охлаждение оказывается не способным обеспечить целевую твердость. Если водяное охлаждение прекращается при температуре выше 250°C, кристаллическая структура может быть частично преобразованной в иные, помимо реечного мартенсита, структуры. Таким образом, температура повторного нагревания ограничивается пределами не ниже температуры Ac3 фазового перехода, температура начала водяного охлаждения ограничивается величиной не ниже температуры Ar3 фазового перехода и температура завершения водяного охлаждения ограничивается показателем не выше 250°C.

В данном изобретении температура Ac3 фазового перехода (°C) и температура Ar3 фазового перехода (°C) могут быть получены с использованием любых без ограничения уравнений. Например, Ac3=854-180C+44Si-14Mn-17,8Ni-1,7Cr и Ar3=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo. В данных уравнениях соответствующие символы элементов представляют содержания этих элементов в стали (в мас. %).

В данном изобретении в соответствии с требуемыми особенностями могут, кроме того, существовать следующие ограничения производственных режимов.

Условия горячей прокатки

Когда это целесообразно, сляб повторно нагревается до температуры, которая предпочтительно поддерживается не ниже 1100°C, более предпочтительно не ниже 1150°C и еще более предпочтительно не ниже 1200°C. Цель этого регулирования состоит в том, чтобы обеспечить возможность образования в слябе большего количества кристаллов, таких как кристаллы Nb, который будут растворены в слябе и, таким образом, смогут эффективно гарантировать образование достаточного количества тонкодисперсных выделений.

При контролировании горячей прокатки предпочтительно, чтобы обжатие в нерекристаллизованной области составляло не менее 30%, более предпочтительно не менее 40% и еще более предпочтительно не менее 50%. Цель прокатки в нерекристаллизованной области с обжатием в 30% или более состоит в том, чтобы посредством деформационно-индуцированного осаждения вызвать образование тонкодисперсных выделений, таких как карбонитриды Nb.

Охлаждение

Когда после завершения горячей прокатки выполняется водяное охлаждение, предпочтительно, чтобы толстолистовая сталь принудительно охлаждалась до температуры не выше 250°С. Цель этого охлаждения состоит в ограничении роста тонкодисперсных выделений, образование которых было вызвано деформационно-индуцированным осаждением в ходе прокатки.

Скорость увеличения температуры в течение повторного нагрева

При регулировании температуры повторного нагрева в ходе повторного нагрева для упрочнения закалкой предпочтительно, чтобы толстолистовая сталь повторно нагревалась до температуры Ac3 фазового перехода или выше со скоростью не менее 1°C/с. Цель такого контролирования состоит в том, чтобы ограничить рост тонкодисперсных выделений, образующихся перед повторным нагревом, и рост тонкодисперсных выделений, образующихся в ходе повторного нагрева. Способ нагрева может быть любым, например индукционным нагревом, электрическим нагревом, нагреванием инфракрасным излучением или атмосферным нагревом, при условии обеспечения требуемой скорости возрастания температуры.

При соблюдении вышеуказанных условий могут быть получены износоустойчивые толстолистовые стали, имеющие тонкое кристаллическое зерно и демонстрирующие превосходную низкотемпературную ударную вязкость.

Примеры

Были выплавлены стали А - К, имеющие химическую композицию, показанную в таблице 1, и разлиты в слябы, которые были подвергнуты обработке в условиях, описанных в таблице 2, с тем, чтобы получить толстые стальные пластины. Температура пластин измерялась термопарой, вводимой в центральную область по толщине пластины.

Таблица 2 представляет структуры толстолистовых сталей, средний размер кристаллических зерен, окруженных большеугловыми границами зерна, имеющими различия в ориентации в 15° или более, данные по плотности тонкодисперсных выделений с диаметром не более 50 нм, показатели твердости по Бринеллю и поглощенной энергии по Шарпи при -40°C полученных толстолистовых сталей.

Для определения структуры стальной пластины отбирался образец из поперечного сечения, перпендикулярного направлению прокатки, это сечение полировалось до зеркального блеска и протравливалось метанольным раствором азотной кислоты; структуры определялись рассмотрением под оптическим микроскопом при х400 увеличении области, располагавшейся на 0,5 мм ниже поверхности стальной пластины, и области, соответствовавшей 1/4 толщины пластины.

Для оценки ориентации кристаллов методом EBSP (угловое распределение обратнорассеянных электронов) анализировался участок в 100 квадратных микрон, который включал область, соответствовавшую 1/4 толщины пластины. При определении большого угла как представляющего различие в ориентации границ зерна в 15° или более были измерены диаметры зерен, окруженных такими границами, и вычислено простое среднее полученных результатов.

Для определения численной плотности тонкодисперсных выделений на единицу площади из области, соответствовавшей 1/4 толщины пластины, был приготовлен образец методом экстракционных углеродных реплик, рассмотрен и сфотографирован с помощью ТЕМ. Подсчитывалось количество тонкодисперсных выделений, имевших диаметр не более 50 нм, и определялась численная плотность на 100 мкм2.

Для определения твердости по Бринеллю оценивалась область на 0,5 мм ниже поверхности стальной пластины в соответствии с JIS Z2243 (2008) с прикладываемой при испытании силой в 3000 кгс с помощью шарика из цементированного карбида, имевшего диаметр индентора 10 мм (HBW10/3000). Поглощенная энергия по Шарпи при -40°C измерялась в соответствии с JIS Z2242 (2005) применительно к полноразмерным образцам для испытаний по Шарпи с V-образным надрезом, которые были получены из области на 1/4 толщины пластины в перпендикулярном к направлению прокатки направлении. Были получены данные по трем образцам, представлявшим соответствующие условия, и результаты усреднены.

Целевые величины (диапазон по изобретению) твердости по Бринеллю равнялись 361 и выше, а для поглощенной энергии по Шарпи при -40°C составляли 27 Дж и выше.

Представленные в таблице 2 толстолистовые стали №№1-7, 10, 11 и 14 - 16 соответствовали химической композиции и производственным режимам, требующимся в данном изобретении. Эти толстолистовые стали также удовлетворяли требующимся в изобретении показателям по среднему размеру зерна и плотности тонкодисперсных вьщелений и достигали целевых для изобретения величин твердости по Бринеллю и vE-40°С.

Температуры нагревания, применявшиеся для толстолистовых сталей №№10 и 14, были увеличены в диапазоне по изобретению по сравнению с использовавшимися для толстолистовых сталей №№1 и 5, соответственно, приводя к более тонкому размеру зерна и большей плотности тонкодисперсных выделений. Как следствие, был достигнут более высокий показатель vE-40°С.

Толстолистовая сталь №11 удовлетворяла требованиям по изобретению и включала более высокую степень обжатия в нерекристаллизованной области, чем толстолистовая сталь №2. Следовательно, был уменьшен размер зерна, увеличена плотность тонкодисперсных выделений и повышен показатель vE-40°С.

Толстолистовая сталь №15 удовлетворяла требованиям по изобретению и, в отличие от толстолистовой стали №6, включала водяное охлаждение после прокатки. Соответственно, был уменьшен размер зерна, увеличена плотность тонкодисперсных выделений и улучшен показатель vE-40°С.

Толстолистовая сталь №16 удовлетворяла требованиям изобретения и включала более высокую скорость увеличения температуры в ходе повторного нагрева по сравнению с толстолистовой сталью №7. Соответственно, был уменьшен размер зерна, увеличена плотность тонкодисперсных выделений и повышен показатель vE-40°С.

С другой стороны, содержание Nb и содержание (Nb+Ti+Al+V) в толстолистовой стали №8 и содержание Nb в толстолистовой стали №9 было ниже нижних пределов диапазонов по изобретению. Как следствие, их средний размер зерна, плотность тонкодисперсных выделений и vE-40°С целевых величин не достигали.

В толстолистовой стали №12 из-за температуры повторного нагрева, составлявшей менее Ac3, область от поверхности до глубины 1/4 по толщине пластины включала двухфазную структуру, а именно состоящую из феррита и мартенсита. Недостаточность образования структуры реечного мартенсита является причиной более низкого показателя твердости по Бринеллю, чем требуется в данном изобретении.

В толстолистовой стали №13 из-за температуры начала водяного охлаждения, составлявшей менее Ar3, область от поверхности до глубины 1/4 по толщине пластины включала двухфазную структуру, а именно состоящую из феррита и мартенсита. Недостаточность образования структуры реечного мартенсита является причиной более низкого показателя твердости по Бринеллю, чем требуется в данном изобретении.

С другой стороны, толстолистовые стали №№17 и 18 имели содержание Al ниже нижнего предела диапазона по изобретению. Как следствие, их средний размер зерна, плотность тонкодисперсных выделений и vE-40°С целевых величин не достигали.

Похожие патенты RU2627830C2

название год авторы номер документа
ИЗНОСОУСТОЙЧИВАЯ ТОЛСТОЛИСТОВАЯ СТАЛЬ, ОБЛАДАЮЩАЯ ПРЕВОСХОДНОЙ НИЗКОТЕМПЕРАТУРНОЙ УДАРНОЙ ВЯЗКОСТЬЮ И УСТОЙЧИВОСТЬЮ К ВОДОРОДНОМУ ОХРУПЧИВАНИЮ, А ТАКЖЕ СПОСОБ ЕЕ ПРОИЗВОДСТВА 2014
  • Нагао, Акихиде
  • Миура, Синити
  • Исикава, Нобуюки
RU2627826C2
ВЫСОКОТВЕРДЫЙ ГОРЯЧЕКАТАНЫЙ СТАЛЬНОЙ ПРОДУКТ И СПОСОБ ЕГО ПРОИЗВОДСТВА 2014
  • Суйкканен, Паси
  • Хеммиля, Микко
  • Ланг, Виса
  • Оя, Олли
  • Миеттунен, Илькка
RU2674796C2
СПОСОБ ПРОИЗВОДСТВА СВЕРХВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2014
  • Чукин Михаил Витальевич
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2583229C9
ТОЛСТОСТЕННЫЙ ВЫСОКОПРОЧНЫЙ ГОРЯЧЕКАТАНЫЙ СТАЛЬНОЙ ЛИСТ С ПРЕВОСХОДНОЙ НИЗКОТЕМПЕРАТУРНОЙ УДАРНОЙ ВЯЗКОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Ками Тикара
  • Наката Хироси
  • Накагава Кинья
RU2493284C2
ИЗНОСОСТОЙКИЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗНОСОСТОЙКОГО СТАЛЬНОГО ЛИСТА 2021
  • Кицуя, Сигеки
  • Суэёси, Хитоси
  • Томоюки
RU2803534C1
ИЗНОСОСТОЙКИЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗНОСОСТОЙКОГО СТАЛЬНОГО ЛИСТА 2021
  • Кицуя, Сигеки
  • Такаями, Наоки
  • Томоюки
RU2803300C1
Способ производства высокопрочного износостойкого металлопроката 2020
  • Яковлева Полина Сергеевна
RU2765046C1
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОГО КОМПОНЕНТА И СТАЛЬНОЙ КОМПОНЕНТ 2016
  • Окамото, Рики
  • Кодзима, Нобусато
  • Хикида, Казуо
  • Маекава, Нориюки
RU2711060C1
ТОЛСТОЛИСТОВАЯ СТАЛЬ, ХАРАКТЕРИЗУЮЩАЯСЯ НИЗКИМ СООТНОШЕНИЕМ МЕЖДУ ПРЕДЕЛОМ ТЕКУЧЕСТИ И ПРЕДЕЛОМ ПРОЧНОСТИ, ВЫСОКОЙ ПРОЧНОСТЬЮ И ВЫСОКИМ РАВНОМЕРНЫМ ОТНОСИТЕЛЬНЫМ УДЛИНЕНИЕМ, И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2010
  • Симамура Дзундзи
  • Исикава Нобуюки
  • Сиканаи Нобуо
RU2502820C1
ИЗНОСОСТОЙКИЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗНОСОСТОЙКОГО СТАЛЬНОГО ЛИСТА 2021
  • Кицуя Сигеки
  • Суэёси Хитоси
  • Томоюки
RU2803299C1

Реферат патента 2017 года ИЗНОСОУСТОЙЧИВАЯ ТОЛСТОЛИСТОВАЯ СТАЛЬ, ОБЛАДАЮЩАЯ ПРЕВОСХОДНОЙ НИЗКОТЕМПЕРАТУРНОЙ УДАРНОЙ ВЯЗКОСТЬЮ, И СПОСОБ ЕЕ ПРОИЗВОДСТВА

Изобретение относится к области металлургии, а именно к износоустойчивой толстолистовой стали. Сталь имеет химическую композицию, содержащую, мас.%: С: от 0,10 до менее 0,20, Si: от 0,05 до 0,5, Mn: от 0,5 до 1,5, Cr: от 0,05 до 1,20, Nb: от 0,01 до 0,08, В: от 0,0005 до 0,003, Al: от 0,01 до 0,08, N: от 0,0005 до 0,008, Р: не более 0,05, S: не более 0,005, О: не более 0,008, остальное Fe и неизбежные примеси. Твердость стали по Бринеллю (HBW10/3000) составляет 361 или более, а микроструктура содержит тонкодисперсные выделения диаметром 50 нм или менее с плотностью 50 или более частиц на 100 мкм2. Микроструктура стали от поверхности до глубины по меньшей мере 1/4 толщины пластины представляет собой реечный мартенсит со средним размером зерна не более 20 мкм, причем средний размер зерна представляет средний размер кристаллических зерен, окруженных большеугловыми границами зерна, имеющими различие в ориентации в 15° или более. Сталь обладает высокими твердостью и низкотемпературной ударной вязкостью. 2 н. и 15 з.п. ф-лы, 2 ил., 2 табл.

Формула изобретения RU 2 627 830 C2

1. Износостойкая толстолистовая сталь, имеющая химическую композицию, содержащую, мас.%: С: от 0,10 до менее 0,20, Si: от 0,05 до 0,5, Mn: от 0,5 до 1,5, Cr: от 0,05 до 1,20, Nb: от 0,01 до 0,08, В: от 0,0005 до 0,003, Al: от 0,01 до 0,08, N: от 0,0005 до 0,008, Р: не более 0,05, S: не более 0,005, О: не более 0,008, остальное Fe и неизбежные примеси, при этом она имеет твердость по Бринеллю (HBW10/3000) равную 361 или более и микроструктуру, содержащую тонкодисперсные выделения диаметром 50 нм или менее с плотностью 50 или более частиц на 100 мкм2, причем микроструктура стали от поверхности до глубины по меньшей мере 1/4 толщины пластины представляет собой реечный мартенсит со средним размером зерна не более 20 мкм, причем средний размер зерна представляет средний размер кристаллических зерен, окруженных большеугловыми границами зерна, имеющими различие в ориентации в 15° или более.

2. Толстолистовая сталь по п. 1, химическая композиция которой дополнительно содержит один из, мас.%: Мо: не более 0,8, V: не более 0,2 и Ti: не более 0,05.

3. Толстолистовая сталь по п. 1, химическая композиция которой дополнительно содержит один из, мас.%: Nd: не более 1, Cu: не более 1, Ni: не более 1, W: не более 1, Са: не более 0,005, Mg: не более 0,005 и редкоземельный металл (РЗМ): не более 0,02.

4. Толстолистовая сталь по п. 2, химическая композиция которой дополнительно содержит один из, мас.%: Nd: не более 1, Cu: не более 1, Ni: не более 1, W: не более 1, Са: не более 0,005, Mg: не более 0,005 и редкоземельный металл (РЗМ): не более 0,02.

5. Толстолистовая сталь по любому из пп. 1-4, в химической композиции которой содержания Nb, Ti, Al и V удовлетворяют соотношению 0,03≤Nb+Ti+Al+V≤0,14, где Nb, Ti, Al и V представляет собой содержание в мас.% соответствующих элементов и содержания Ti и V равны 0, когда Ti и V не добавляют.

6. Толстолистовая сталь по любому из пп. 1-4, которая имеет толщину от 6 до 125 мм.

7. Толстолистовая сталь по п. 5, которая имеет толщину от 6 до 125 мм.

8. Толстолистовая сталь по любому из пп. 1-4, 7, в которой поглощенная энергия по Шарпи при -40°С составляет не менее 27 Дж.

9. Толстолистовая сталь по п. 5, в которой поглощенная энергия по Шарпи при -40°С составляет не менее 27 Дж.

10. Толстолистовая сталь по п. 6, в которой поглощенная энергия по Шарпи при -40°С составляет не менее 27 Дж.

11. Способ производства износостойкой толстолистовой стали, включающий отливку стали, имеющей химическую композицию по любому из пп. 1-5, получение сляба, горячую прокатку сляба в толстолистовую сталь, имеющую заданную толщину, повторный нагрев толстолистовой стали до температуры Ac3 фазового перехода или выше и последующую закалку толстолистовой стали водяным охлаждением от температуры не ниже температуры Ar3 фазового перехода до температуры не более 250°С.

12. Способ по п. 11, отличающийся тем, что он дополнительно включает повторное нагревание отлитого сляба до 1100°С или выше.

13. Способ по п. 11, в котором горячую прокатку проводят с обжатием в нерекристаллизованной области не менее 30%.

14. Способ по п. 12, в котором горячую прокатку проводят с обжатием в нерекристаллизованной области не менее 30%.

15. Способ по любому из пп. 11-14, отличающийся тем, что он дополнительно включает охлаждение горячекатаной толстолистовой стали водяным охлаждением до температуры не выше 250°С.

16. Способ по любому из пп. 11-14, отличающийся тем, что повторный нагрев горячекатаной или подвергнутой водяному охлаждению толстолистовой стали до температуры Ас3 фазового перехода или выше выполняют со скоростью не менее 1°С/с.

17. Способ по п. 15, отличающийся тем, что повторный нагрев горячекатаной или подвергнутой водяному охлаждению толстолистовой стали до температуры Ас3 фазового перехода или выше выполняют со скоростью не менее 1°С/с.

Документы, цитированные в отчете о поиске Патент 2017 года RU2627830C2

СПОСОБ ПРОИЗВОДСТВА ПРОКАТА С ПОВЫШЕННЫМ СОПРОТИВЛЕНИЕМ ВОДОРОДНОМУ И СЕРОВОДОРОДНОМУ РАСТРЕСКИВАНИЮ 2011
  • Морозов Юрий Дмитриевич
  • Чевская Ольга Николаевна
  • Матросов Максим Юрьевич
  • Таланов Олег Петрович
  • Гущина Светлана Викторовна
RU2471003C1
СТАЛЬ С ВЫСОКИМ СОПРОТИВЛЕНИЕМ НА РАЗРЫВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 1998
  • Коо Дзайоунг
  • Бангару Нарасимха-Рао В.
  • Льютон Майкл Дж.
  • Петерсен Клиффорд В.
  • Фудзивара Казуки
  • Окагути Судзи
  • Хамада Масахико
  • Комизо Ю-Ити
RU2205245C2
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2010
  • Никитин Валентин Николаевич
  • Шахпазов Евгений Христофорович
  • Шлямнев Анатолий Петрович
  • Маслюк Владимир Михайлович
  • Трайно Александр Иванович
  • Баранов Владимир Павлович
  • Голованов Александр Васильевич
  • Попова Анна Александровна
RU2433191C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2010
  • Вольшонок Игорь Зиновьевич
  • Торшин Виктор Тимофеевич
  • Никитин Валентин Николаевич
  • Шлямнев Анатолий Петрович
  • Филиппов Георгий Анатольевич
  • Никитин Михаил Валентинович
  • Маслюк Владимир Михайлович
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2442831C1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
AU 2009355404 A1, 17.05.2012.

RU 2 627 830 C2

Авторы

Нагао, Акихиде

Миура, Синити

Исикава, Нобуюки

Даты

2017-08-11Публикация

2014-03-19Подача