СПОСОБ ПОЛУЧЕНИЯ АЛЬДЕГИДОВ ГИДРОФОРМИЛИРОВАНИЕМ С МОДИФИКАЦИЕЙ ЛИГАНДОВ АЦЕТАЛИЗАЦИЕЙ Российский патент 2017 года по МПК C07C45/50 C07C47/02 B01J23/46 B01J27/185 B01J31/08 B01J31/24 B01J38/48 

Описание патента на изобретение RU2628609C2

Область техники

Изобретение относится к области получения альдегидов гидроформилированием с модификацией лигандов для гомогенного катализа, а именно - к способам синтеза таких лигандов для гидроформилирования олефинов С420 путем проведения ацетализации с применением альдегидов, образующихся из олефинов. Изобретение может быть использовано в нефтехимии и органическом синтезе для проведения гидроформилирования и последующего отделения катализатора в мембранных реакторах.

Уровень техники

Для проведения гидроформилирования олефинов С420 известно использование различных металлокомплексных катализаторов, в частности комплексов кобальта или родия с фосфиновыми или фосфитными лигандами. Такие системы хорошо известны: комплексы кобальта - US 3420898 А, опубликовано 07.01.1969, кл. С07С 29/16; комплексы родия с фосфинсодержащими лигандами - US 4148830 А, опубликовано 10.04.1979, кл. С07С 45/10, US4599206 А, опубликовано 08.07.1986, кл. C07F 9/02; US 4668651 А, опубликовано 26.05.1987, кл. B01J 31/20; B01J 31/22; и комплексы родия с фосфитами US 4769498 А опубликовано 06.09.1988, кл. С07С 45/50. В таких процессах отделение полученных продуктов от катализатора используются традиционные подходы, предполагающие их отгонку. Остаток, содержащий катализатор и свободный лиганд возвращается в реактор. Условия, создающиеся в испарителе (высокая температура и низкое парциальное давление монооксида углерода), способствуют дезактивации металлокомплекса. Причиной такой дезактивации, по-видимому, является образование неактивных или менее активных соединений родия и разложение лиганда. Успешный способ предупреждения и/или снижения такого разложения фосфорорганического лиганда и дезактивации катализатора, которое происходит при жестких условиях разделения в испарителе, представляет собой мембранное отделение катализатора от альдегидов, при котором отсутствует существенное нагревание смеси.

В настоящее время известны способы отделения катализаторов от продуктов реакции с применением мембран (US 6252123 В1, опубликовано 26.06.2001, кл. B01D 61/02, B01D 61/14, B01D 71/02, B01J 31/40, B01J 37/00, С07С 45/50, С07С 45/78). Как правило, в этих случаях способы выделения и частичной рециркуляции переходных металлов и (или) их каталитически активных комплексных соединений из реакционной смеси путем комбинации по меньшей мере одностадийного мембранного разделения и адсорбции, причем поток, содержащий катализатор, включающий переходный металл, с помощью по меньшей мере одной одноступенчатой стадии мембранного разделения разделяется на поток ретентата, обогащенный по содержанию переходного металла, который снова подается в реакционную смесь и поток пермеата, обедненный по содержанию переходного металла, и далее этот поток пермеата, обедненный по содержанию переходного металла, подается на стадию адсорбции (DE 102009001230, опубликовано 02.02.2010, кл. C01G 55/00). Каталитическая система также может отделяться от реакционной смеси путем фильтрования под давлением через полупроницаемую мембрану. Для достижения высокой степени удержания родиевого катализатора и лиганда при мембранной фильтрации необходим использование высокомолекулярных катализаторов с массой от нескольких тысяч дальтон (Нефтехимия, 1992, Т. 32, №3, С 200-207). В этом случае удается достигнуть концентрации родия в пермеате 20 ppb (Fang J., Jana R., Tunge J.A., Subramaniam B. // App. Catal. A: Gen. 2011, vol. 393, p. 294; Xie Z., Fang J., Subramaniam B. // React. Eng. Kinet. Catal. 2013, vol. 59, №11, p. 4287). Применение олигосилоксановых лигандов, модифицированных дифенилфосфиновыми группами с массой 12000 г/моль обеспечивает концентрацию в пермиате менее 2 ppm (Zhuanzhuan Xie, Geoffrey R. Akien, Bibhas R. Sarkar, ⊥ Bala Subramaniam, and Raghunath V. Chaudhari nd. Eng. Chem. Res., 2015, 54 (43), pp 10656-10660). При использовании обычных катализаторов, таких как трис-(п-пропилфенил)фосфин, трис-октилфосфин и др. достигается лишь 90-95% выделение катализатора (US 5395979 А, опубликовано 07.03.1995, кл. B01J 31/24, B01J 31/40, B01J 38/48, С07В 61/00, С07С 45/50, С07С 47/02). Так, при нанофильтации для отделения гидридо-трис(трифенилфосфин)карбонила родия (I) результаты по удерживанию катализатора составляют лишь 93% (Razak Ν., Shaharun M.S., Mukhtar Η., Taha M.F. // Sains Malaysiana. 2013, vol. 42, №4, p. 515). Таким образом, успешное использование нанофильтрации через мембраны требует разработки способов увеличения размеров лигандов и соответствующих комплексов.

По технической сущности и результату наиболее близким к предлагаемому изобретению является метод синтеза циклических ацеталей с использованием реакционной экстракции полиолов в концентрированных растворах и получение циклических ацеталей или кеталей с использованием твердых кислот (US 8829206 В2, опубликовано 09.09.2014, кл. C07D 317/12, C07D 319/12, C07D 321/00, C07D 321/06). Данные изобретения описывают получения циклических ацеталей с использованием кислотных катализаторов из альдегида и полиола. При этом они не направлены на получение объемных лигандов для катализаторов и не рассматривают в качестве исходного вещества олефинов - предшественников альдегидов.

Раскрытие изобретения

Задачей настоящего изобретения является разработка способа получения альдегидов гидроформилированием с получением объемных лигандов для последующего мембранного отделения металлокомплексных катализаторов с использованием процесса ацетализации соответствующего исходного лиганда-полиола в среде синтез-газа с применением олефинов в качестве сырья.

Техническим результатом является образование объемного лиганда в процессе реакции исходного лиганда с альдегидом, что позволяет проводить эффективное разделение каталитического комплекса от продукта (альдегида); возможность многократного использования каталитического комплекса, т.к. каталитический комплекс отделяется от альдегида неразрушающим методом; использование олефинов для получения ацеталей, что позволяет избежать отдельной стадии получения альдегидов и удешевляет процесс; использование в качестве катализатора доступных и легко отделяемых от раствора объемного лиганда промышленных гетерогенных кислотных катализаторов. Полученные лиганды имеют существенно больший размер чем их предшественники при сохранении особенностей координации родия. Варьирование размера олефина позволяет варьировать размер альдегида. Потенциально само увеличение объема лиганда может быть совмещено с собственно гидроформилированием альдегида. При использовании жидких кислот в процессе выделения лиганда возможен распад полученного ацеталя.

Технический результат достигается за счет способа получения альдегидов гидроформилированием с модификацией лигандов ацетализацией включающим смешивание в автоклаве этилового спирта (А), ацетилацетоната дикарбонила родия Rh(acac)(CO)2 (Б), при соотношении Б:А от 1:6000 до 1:10000 в массовых долях, лиганда, содержащего остаток ароматического фосфина и по меньшей мере две гидроксильные группы (В), при соотношении В:Б от 1:1 до 5:1 в мольных долях, линейного олефина ряда С420, (Г) при соотношении Г:Б от 500:1 до 5000:1 в мольных долях и катионита в кислой форме (Д), взятого в 10-20-кратном избытке по отношению к лиганду (В); создание в автоклаве давления синтез-газа (СО/Н2=1:1) 0,1-10 МПа, нагрев смеси до 30-120°С, при этом синтез ведут при перемешивании магнитной мешалкой при 500-1000 об/мин в течение 3-10 часов с образованием альдегида и каталитического комплекса родия с объемным лигандом; отделение катионита посредством фильтрации и отделение каталитического комплекса родия с объемным лигандом посредством мембранной нанофильтрации от смеси альдегида с растворителем с последующим упариванием растворителя.

Катионит в кислой форме представляет собой Wofatit KPS или Amberlyst 18.

Изобретение также касается способа выделения комплекса родия с лигандом (В) из каталитического комплекса родия с объемным лигандом, полученным из вышеприведенного способа.

Способ выделения комплекса родия с лигандом (В) из каталитического комплекса родия с объемным лигандом, полученного из вышеприведенного способа включает разложение объемного лиганда минеральными кислотами в массовом соотношении кислота:лиганд 1:19.

Минеральная кислота может представлять собой 10% раствор серной кислоты.

Минеральная кислота может представлять собой 10% раствор фосфорной кислоты.

Осуществление изобретения

Способ получения альдегидов гидроформилированием с модификацией лигандов ацетализацией включает следующие этапы:

1) Смешение в автоклаве: этилового спирта (А), ацетилацетоната дикарбонил родия Rh(acac)(CO)2 (Б), при соотношении Б:А от 1:6000 до 1:10000 в массовых долях; лиганда, содержащего остаток ароматического фосфина и по меньшей мере две гидроксильные группы (В), при соотношении В:Б от 1:1 до 5:1 в мольных долях; линейного олефина ряда С420 (Г) при соотношении Г:Б от 500:1 до 5000:1 в мольных долях; и катионита в кислой форме (Д), взятого в 10-20-кратном избытке по отношению к лиганду (В);

Катионит в кислой форме (Д) может представлять собой Wofatit KPS или Amberlyst 18.

2) Создание в автоклаве давления синтез-газа (СО/Н2=1:1) 0,1-10 МПа, нагрев смеси до 30-120°С. При этом синтез ведут при перемешивании магнитной мешалкой при 500-1000 об/мин в течение 3-10 часов;

По окончании реакции получают смесь, содержащую: альдегид и каталитический комплекс родия с объемным лигандом. Объемный (модифицированный) лиганд образуется при реакции полученного выше альдегида с лигандом (В) в присутствии (Д) (лиганд с альдегидом реагируют в присутствии катионита Д) во время реакции ацетализации.

3) После завершения реакции автоклав охлаждают, сбрасывают давление синтез-газа. Посредством фильтрации отделяют катионит. Затем отделяют каталитический комплекс родия с объемным лигандом посредством мембранной нанофильтрации от смеси альдегида с растворителем. Для этого смесь помещают в мембранную ячейку, имеющую размер пор 2 нанометра. В процессе мембранной нанофильтрации от смеси альдегида с растворителем отделяют каталитический комплекс родия с объемным лигандом, имеющим размер 5-15 нанометров. Каталитический комплекс используют повторно. Растворитель (А) удаляют посредством упаривания.

Изобретение также касается способа выделения комплекса родия с лигандом (В) из каталитического комплекса родия с объемным лигандом, получаемым на втором этапе описанного выше способа, который включает разложение объемного лиганда минеральными кислотами в массовом соотношении кислота:лиганд 1:19.

Минеральная кислота может представлять собой 10% раствор серной или 10% раствор фосфорной кислоты.

В предлагаемом способе полиольный лиганд взаимодействует с образующимся в процессе гидроформилирования олефина альдегидом в присутствии гетерогенного кислотного катализатора. Предпочтительно в качестве предшественников объемных лигандов могут быть использованы полиолы различного строения, в том числе и содержащие фосфор в качестве координирующего атома

где R - фенил, -(СН2-)n или любой другой органический фрагмент.

Важной особенностью таких предшественников является возможность образования циклических ацеталей по схемам:

где R'- углеводородный фрагмент

Предпочтительно использование концентрированных растворов предшественников в спиртах или воде. Возможно использование органических растворителей, не смешивающихся со спиртами и водой для экстракции образующихся лигандов. Для образования альдегидов реакцию проводят с участием синтеза газа и олефина, предпочтительно высшего олефина С7-16, в том числе и разветвленного строения (тримеров пропилена и димеров бутилена), замещенных стиролов и винилнафталина. В качестве предшественников катализатора используются предпочтительно комплексы родия. Предпочтительные условия проведения реакции: температура от 30 до 120°С, давление синтез-газа составляет от 0.1 до 10 МПа. Одновременно с комплексом родия используется гетерогенный кислотный катализатор, предпочтительно сильнокислотные катиониты, такие как КУ-2, Amberlyst 18, Wofatit KPS и др.

Пример 1.

В 10 мл автоклав, снабженный магнитной мешалкой, помещают 1000 мг N-(1,3-дигидрокси-2-(гидроксиметил)пропан-2-ил)-4-(дифенилфосфанил) бензамида, 1 мл этанола, 1 мл октена-1. Смесь интенсивно перемешивается на магнитной мешалке с частотой 1000 об/мин, после чего в систему добавляется 1 мг родийацетилацетонат дикарбонила и 1 г Wofatit KPS в кислой форме. Автоклав закрывают и подают давление синтез газа (СО/Н2=1) до 4 МПа и термостатируют его при перемешивании 8 часов. После этого синтез-газ спускают, полученную смесь фильтруют, обрабатывают количеством толуола (5 мл), толуольный слой отделяют, толуол отгоняют и избыток альдегида и октена отделяют экстракцией октаном. В остатке получают ацетализированный лиганд. Ацетализированный лиганд далее разлагают до исходного лиганда 10% раствором серной кислоты массой 50 мг. Все операции проводят в аппаратуре Шленка. Выход лиганда - 88%.

Пример 2.

В 20 мл автоклав, снабженный магнитной мешалкой, помещают 3000 мг каликсарена 1, 5 мл этанола, и 4 мл гексена-1. Смесь интенсивно перемешивается на магнитной мешалке частотой 1000 об/мин, после чего в систему добавляется 1 мг родийацетилацетонат дикарбонила и 1 г Amberlist 18 в кислой форме. Автоклав закрывают и подают давление синтез газа (СО/Н2=1) до 4 МПа и термостатируют его при перемешивании 16 часов. После этого синтез-газ спускают, полученную смесь фильтруют, обрабатывают количеством толуола (15 мл), толуольный слой отделяют, толуол отгоняют и избыток альдегида и гексена отделяют экстракцией октаном. В остатке получают ацетализированный лиганд. Ацетализированный лиганд далее разлагают до исходного лиганда 10% раствором фосфорной кислоты массой 150 мг. Все операции проводят в аппаратуре Шленка. Выход лиганда - 67%.

Каликсарен 1

Пример 3.

В 10 мл автоклав, снабженный магнитной мешалкой, помещают 1000 мг 3-(4-(дифенилфосфанил)фенокси)пропан-1,2-диол, 2 мл этанола, 2 мл трипропилена, 1 мл толуола. Смесь интенсивно перемешивается на магнитной мешалке частотой 1000 об/мин, после чего в систему добавляется 1 мг родийацетилацетонат дикарбонила и 1 г Wofatit KPS в кислой форме. Автоклав закрывают и подают давление синтез газа (СО/Н2=1) до 5 МПа и термостатируют его при перемешивании 8 часов. После этого синтез-газ спускают, полученную смесь фильтруют, обрабатывают количеством толуола (5 мл), толуольный слой отделяют, толуол отгоняют и избыток альдегида и трипропилена отделяют экстракцией октаном. В остатке получают ацетализированный лиганд. Ацетализированный лиганд далее разлагают до исходного лиганда 10% раствором фосфорной кислоты массой 50 мг. Все операции проводят в аппаратуре Шленка. Выход лиганда - 91%.

Похожие патенты RU2628609C2

название год авторы номер документа
ФОСФИНСОДЕРЖАЩИЕ КАЛИКСАРЕНОВЫЕ ЛИГАНДЫ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ 2016
  • Караханов Эдуард Аветисович
  • Максимов Антон Львович
  • Вацуро Иван Михайлович
  • Горбунов Дмитрий Николаевич
  • Кардашева Юлия Сергеевна
  • Горбунов Александр Николаевич
  • Сафронова Дарья Сергеевна
RU2646763C1
СПОСОБ ФУНКЦИОНАЛИЗАЦИИ ПОЛИОЛОВ ПУТЕМ ТАНДЕМНОЙ РЕАКЦИИ ГИДРОФОРМИЛИРОВАНИЯ-АЦЕТАЛИЗАЦИИ С ПРИМЕНЕНИЕМ ВОДОРАСТВОРИМОЙ КАТАЛИТИЧЕСКОЙ СИСТЕМЫ 2018
  • Горбунов Дмитрий Николаевич
  • Ненашева Мария Владимировна
RU2708256C1
Родийсодержащие гетерогенные катализаторы для процессов получения пропаналя и диэтилкетона гидроформилированием этилена 2018
  • Горбунов Дмитрий Николаевич
  • Ненашева Мария Владимировна
  • Кардашев Сергей Викторович
  • Кардашева Юлия Сергеевна
  • Теренина Мария Владимировна
  • Максимов Антон Львович
  • Караханов Эдуард Аветисович
  • Никитин Алексей Витальевич
  • Седов Игорь Владимирович
RU2711579C1
СПОСОБ НЕПРЕРЫВНОГО ГИДРОФОРМИЛИРОВАНИЯ ОЛЕФИНОВ C-C 2015
  • Королев Юрий Александрович
  • Носков Юрий Геннадьевич
  • Крон Татьяна Евгеньевна
  • Руш Сергей Николаевич
  • Костин Андрей Михайлович
  • Корнеева Галина Александровна
RU2585285C1
КАТАЛИЗАТОР ДЛЯ ГИДРОФОРМИЛИРОВАНИЯ ОЛЕФИНОВ C, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ АЛЬДЕГИДОВ C 2006
  • Дмитриев Дмитрий Викторович
  • Кулик Александр Викторович
  • Корнеева Галина Александровна
RU2320412C1
СПОСОБ ПОЛУЧЕНИЯ АЛЬДЕГИДОВ C-C 1987
  • Эрнст Биллиг[Us]
  • Энтони Джордж Абатджоглоу[Us]
  • Дэвид Роберт Брайант[Us]
RU2005713C1
СПОСОБЫ ЗАМЕДЛЕНИЯ ДЕАКТИВАЦИИ КАТАЛИЗАТОРА И/ИЛИ ЗАМЕДЛЕНИЯ РАСХОДА ТЕТРАФОСФИНОВОГО ЛИГАНДА В ПРОЦЕССАХ ГИДРОФОРМИЛИРОВАНИЯ 2019
  • Браммер, Майкл А.
  • Бекер, Майкл К.
  • Фелстед, Ii, Уильям Н.
RU2795878C2
СПОСОБЫ РЕГУЛИРОВАНИЯ ПРОЦЕССОВ ГИДРОФОРМИЛИРОВАНИЯ 2019
  • Браммер, Майкл А.
  • Цянь, Хуэйфэн
RU2788171C2
СПОСОБ БЕЗВОДНОГО ПОЛУЧЕНИЯ АЛЬДЕГИДОВ C-C 1989
  • Энтони Джордж Эбатджоглоу[Us]
  • Дэвид Роберт Брайант[Us]
RU2024481C1
СПОСОБ ГИДРОФОРМИЛИРОВАНИЯ 2015
  • Миллер Гленн А.
  • Эизеншмид Томас К.
  • Браммер Майкл А.
  • Бекер Майкл К.
  • Ватсон Рик Б.
RU2674698C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ АЛЬДЕГИДОВ ГИДРОФОРМИЛИРОВАНИЕМ С МОДИФИКАЦИЕЙ ЛИГАНДОВ АЦЕТАЛИЗАЦИЕЙ

Изобретение относится к способу получения альдегидов гидроформилированием с модификацией лигандов ацетализацией. Предлагаемый способ включает следующие стадии:

- смешивание в автоклаве этилового спирта (А), ацетилацетоната дикарбонила родия Rh(acac)(CO)2 (Б), при соотношении Б:А от 1:6000 до 1:10000 в массовых долях, лиганда, содержащего остаток ароматического фосфина и по меньшей мере две гидроксильные группы (В), при соотношении В:Б от 1:1 до 5:1 в мольных долях, линейного олефина ряда С420, (Г) при соотношении Г:Б от 500:1 до 5000:1 в мольных долях и катионита в кислой форме (Д), взятого в 10-20-кратном избытке по отношению к лиганду (В);

- создание в автоклаве давления синтез-газа (СО/Н2=1:1) 0,1-10 МПа, нагрев смеси до 30-120°C, при этом синтез ведут при перемешивании магнитной мешалкой при 500-1000 об/мин в течение 3-10 часов с образованием альдегида и каталитического комплекса родия с объемным лигандом;

- отделение катионита посредством фильтрации и отделение каталитического комплекса родия с объемным лигандом посредством мембранной нанофильтрации от смеси альдегида с растворителем с последующим упариванием растворителя. Также предлагаемое изобретение относится к способу выделения комплекса родия с лигандом (В) из каталитического комплекса родия с объемным лигандом, полученного в процессе гидроформилирования, заключающемуся в разложении объемного лиганда минеральными кислотами в массовом соотношении кислота:лиганд = 1:19. Образование объемного лиганда в процессе гидроформилирования позволяет проводить эффективное разделение каталитического комплекса от продукта – альдегида. 2 н. и 3 з.п. ф-лы, 3 пр.

Формула изобретения RU 2 628 609 C2

1. Способ получения альдегидов гидроформилированием с модификацией лигандов ацетализацией, включающий

- смешивание в автоклаве этилового спирта (А), ацетилацетоната дикарбонила родия Rh(acac)(CO)2 (Б), при соотношении Б:А от 1:6000 до 1:10000 в массовых долях, лиганда, содержащего остаток ароматического фосфина и по меньшей мере две гидроксильные группы (В), при соотношении В:Б от 1:1 до 5:1 в мольных долях, линейного олефина ряда С420, (Г) при соотношении Г:Б от 500:1 до 5000:1 в мольных долях и катионита в кислой форме (Д), взятого в 10-20-кратном избытке по отношению к лиганду (В);

- создание в автоклаве давления синтез-газа (СО/Н2=1:1) 0,1-10 МПа, нагрев смеси до 30-120°C, при этом синтез ведут при перемешивании магнитной мешалкой при 500-1000 об/мин в течение 3-10 часов с образованием альдегида и каталитического комплекса родия с объемным лигандом;

- отделение катионита посредством фильтрации и отделение каталитического комплекса родия с объемным лигандом посредством мембранной нанофильтрации от смеси альдегида с растворителем с последующим упариванием растворителя.

2. Способ получения альдегидов по п. 1, отличающийся тем, что катионит в кислой форме представляет собой Wofatit KPS или Amberlyst 18.

3. Способ выделения комплекса родия с лигандом (В) из каталитического комплекса родия с объемным лигандом, полученного по п. 1, включающий разложение объемного лиганда минеральными кислотами в массовом соотношении кислота: лиганд 1:19.

4. Способ выделения комплекса родия с лигандом (В) по п. 3, отличающийся тем, что минеральная кислота представляет собой 10%-ный раствор серной кислоты.

5. Способ выделения комплекса родия с лигандом (В) по п. 3, отличающийся тем, что минеральная кислота представляет собой 10%-ный раствор фосфорной кислоты.

Документы, цитированные в отчете о поиске Патент 2017 года RU2628609C2

Способ обработки грубошерстного сукна 1926
  • Кочетков Ф.Р.
  • Мангушев Я.В.
SU5862A1
Способ регенерации родийсодержащего катализатора гидроформилирования олефинов 1977
  • Рудольф Куммер
  • Хейнц-Вальтер Шнейдер
  • Курт Швиртен
SU898951A3
US 5099047A1, 24.03.1992
US 8829206B2, 09.09.2014.

RU 2 628 609 C2

Авторы

Караханов Эдуард Аветисович

Максимов Антон Львович

Горбунов Дмитрий Николаевич

Кардашева Юлия Сергеевна

Вацуро Иван Михайлович

Акопян Аргам Виликович

Даты

2017-08-21Публикация

2015-12-30Подача