Способ приготовления микроволокнистого катализатора Российский патент 2017 года по МПК B01J37/02 B01J35/06 

Описание патента на изобретение RU2633369C1

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций. Изобретение может найти применение в процессах производства ценных химических продуктов и полупродуктов, а также при переработке и утилизации разнообразных газообразных и жидких отходов.

Микроволокнистые катализаторы используют в качестве носителя микроволокна, состоящего из различных материалов (стекла, минералов, металлов, полимеров, углерода, хлопка и пр.), обычно размером от 1-2 до 20-30 мкм. Для практического использования такие микроволокна структурируются в виде полотен или тканей, состоящих из нитей, скрученных из микроволокон. Катализаторы на таких носителях отличаются высокой эффективностью внешнего и внутреннего массообмена и в этой связи представляют большой практический интерес.

Известен способ получения катализатора на основе высокосиликатных микроволокон (РФ №2160156, B01J 21/08, B01J 23/38, B01J 23/70, B01J 37/02, 10.12.2000), включающий стадии предварительной обработки высокосиликатной стеклоткани, ее пропитки раствором веществ, содержащих активные компоненты, а также последующей сушки и термической обработки.

Этот способ позволяет получать катализаторы с широким спектром различных активных компонентов и промоторов. Недостатком такого способа является то, что при пропитке микроволокнистой ткани раствор активного компонента аккумулируется преимущественно в зонах перекрещивания нитей, соответственно, в итоге возникает неоднородность распределения активного компонента в катализаторе. Эта неоднородность усугубляется тем, что в условиях практического применения зоны перекрещивания нитей наименее доступны для реагентов. Дополнительным недостатком является недостаточная производственная гибкость технологии, связанная с тем, что возможность производства тканных микроволокнистых катализаторов различных форм и размеров ограничена геометрией производящихся микроволокнистых тканей, используемых в качестве носителей.

Изобретение решает задачу разработки эффективного способа приготовления микроволокнистого катализатора.

Технический результат - высокое равномерное распределение активного компонента по поверхности катализатора, а также возможность производства катализатора с гибкой вариацией его форм и размеров.

Задача решается тем, что при производстве микроволокнистого катализатора в форме структурированных полотен из нитей, скрученных из микроволокон носителя с нанесенным активным компонентом, включающем стадии предварительной обработки носителя, изготовления тканных или плетенных полотен из нитей, пропитки предшественниками активных компонентов, их сушки и термообработки, согласно изобретению производство катализатора осуществляют в две стадии, при этом на первой стадии производства производят предварительную обработку нитей, пропитку нитей предшественниками активных компонентов, их сушку и термообработку, а на второй стадии из полученных нитей производят изготовление структурированных полотен. При этом стадия предварительной обработки нитей может включать промывку и обжиг нитей, а также нанесение на нити слоя вторичного носителя с развитой внутренней поверхностью, например слоя диоксида кремния, оксида алюминия, диоксида титана или активированного углерода. В качестве активных компонентов в таких катализаторах могут быть использованы благородные металлы, такие как платина, палладий, золото, серебро и др., и/или оксиды переходных металлов, например никель, железо, медь, хром, ванадий, кобальт, редкоземельные металлы и др.

Для производства катализатора в качестве носителя могут использоваться нити толщиной от 0.1 до 5 мм, скрученные из стеклянных, минеральных, углеродных или полимерных волокон диаметром от 1 до 30 мкм.

Нанесение предшественников активного компонента на нити позволяет обеспечить однородное нанесение активного компонента по всей длине нити. Соответственно, из произведенных нитей далее производятся структурированные полотна и ткани с равномерным распределением активного компонента по их поверхности, без аккумуляции активного компонента в зоне пересечения нитей. Кроме того, в этом случае возможно изготовление катализатора заданных геометрических форм и размеров, в частности, прямоугольных полос или листов заданной ширины. Для производства каталитических тканей из каталитических нитей могут использоваться стандартные ткацкие станки.

С помощью предложенного способа можно наносить разнообразные активные компоненты на гибкие микроволокнистые носители, что расширяет возможности создания принципиально новых каталитических систем с улучшенными инженерными свойствами для различных практических применений.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Для приготовления катализатора используется носитель, представляющий собой нити диаметром 1 мм, выполненные из стекловолокон с высоким (более 96 мас. %) содержанием SiO2. Нанесение активного компонента производят путем пропитки нити водным раствором, содержащим ацетат палладия. Перед пропиткой нить прокаливают при температуре 600°С в течение 20 мин для удаления органического замасливателя. После пропитки нить высушивают в воздухе при температуре 90°С в течение 10 мин, затем подвергают термообработке при 450°С в течение 30 мин. Содержание палладия в готовом катализаторе составляет 0.07-0.1 мас. %. Из полученной нити с помощью ткацкого станка производят ткань сатиновой структуры шириной 16 см.

Полученный катализатор в реакции глубокого окисления пропана при температуре 400°С и времени контакта 0,25 с демонстрирует степень превращения пропана 48%.

Аналогичный катализатор, приготовленный аналогичным образом, но путем пропитки готовой стеклоткани шириной 80 см с последующей ее резкой на полосы шириной 16 см, в этих условиях демонстрирует конверсию пропана 41%, кроме того, он механически нестабилен на краях полос и может постепенно разрушаться при эксплуатации.

Пример 2.

Аналогичен примеру 1, но перед нанесением активного компонента на нити наносят дополнительный внешний слой вторичного носителя с развитой внутренней поверхностью, а в качестве активного компонента используют хромит меди. Для этого после предварительного прокаливания нить пропитывают по влагоемкости водным раствором силиказоля, высушивают и прокаливают при 400°С в течение 30 мин. В результате удельная поверхность нити возрастает с 1 м2/г до 30 м2/г. Полученную нить пропитывают водным раствором бихромата меди, высушивают и прокаливают при 400°С в течение 1 ч. Полученный катализатор содержит около 2.5 мас. % хромита меди в пересчете на металлическую медь. Из полученной нити с помощью ткацкого станка производят ткань сатиновой структуры шириной 10 см.

Полученный катализатор в реакции глубокого окисления этилбензола в воздухе при температуре 400°С и времени контакта 0,15 с демонстрирует степень превращения этилбензола 56%.

Аналогичный катализатор, приготовленный аналогичным образом, но путем пропитки готовой стеклоткани шириной 80 см с последующей ее резкой на полосы шириной 10 см, в этих условиях демонстрирует конверсию этилбензола 48%, кроме того, он механически нестабилен на краях полос и может постепенно разрушаться при эксплуатации.

Пример 3.

Аналогичен примеру 2, но в качестве активного компонента используют оксид железа. Для этого после нанесения вторичного носителя полученную нить пропитывают водным раствором, содержащим нитрат железа, высушивают и прокаливают при 400°С в течение 1 ч. Полученный катализатор содержит около 1,9 мас. % оксида железа в пересчете на металлическое железо. Из полученной нити с помощью ткацкого станка производят ткань сатиновой структуры шириной 8 см.

Полученный катализатор в реакции селективного окисления сероводорода в серу при температуре 250°С и времени контакта 1 с демонстрирует степень превращения сероводорода 84% при селективности окисления в серу 80%.

Аналогичный катализатор, приготовленный аналогичным образом, но путем пропитки готовой стеклоткани шириной 80 см с последующей ее резкой на полосы шириной 8 см, в этих условиях демонстрирует конверсию сероводорода 80% при селективности окисления в серу 75%, кроме того, он механически нестабилен на краях полос и может постепенно разрушаться при эксплуатации.

Пример 4.

Для приготовления катализатора используется носитель, представляющий собой базальтовые нити диаметром 0,5 мм. Исходную нить пропитывают по влагоемкости водным раствором силиказоля, высушивают и прокаливают при 400°С в течение 30 мин. Нанесение активного компонента производят путем пропитки полученной нити водным раствором, содержащим нитрат никеля. После пропитки нить высушивают в воздухе при температуре 90°С в течение 10 мин, затем подвергают термообработке при 450°С в течение 30 мин. Содержание оксида никеля в готовом катализаторе составляет 2,0 мас. % в пересчете на металлический никель. Из полученной нити с помощью ткацкого станка производят ткань сатиновой структуры шириной 20 см.

Полученную ткань зауглероживают при протекании реакции каталитического разложения углеводородов в среде легких парафинов при температуре 450°С в течение 5 ч. Удельная поверхность полученного материала составляет ~100 м2/г, выход нановолокнистого углерода 65 г на 1 г никеля.

Аналогичный материал, приготовленный аналогичным образом, но путем пропитки готовой стеклоткани шириной 80 см с последующей ее резкой на полосы шириной 20 см, в этих условиях демонстрирует удельную поверхность ~80 м2/г и выход углерода 55 г на 1 г никеля.

Похожие патенты RU2633369C1

название год авторы номер документа
Микроволокнистый носитель для катализаторов и способ его приготовления 2016
  • Загоруйко Андрей Николаевич
  • Лопатин Сергей Алексеевич
  • Зажигалов Сергей Валерьевич
  • Писарев Данил Александрович
  • Микенин Павел Евгеньевич
  • Баранов Дмитрий Васильевич
  • Попов Максим Викторович
RU2624216C1
КАТАЛИЗАТОР ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ 2018
  • Загоруйко Андрей Николаевич
  • Лопатин Сергей Алексеевич
RU2674341C1
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННЫХ КАТАЛИЗАТОРОВ МЕТОДОМ ИМПУЛЬСНОГО ПОВЕРХНОСТНОГО ТЕРМОСИНТЕЗА 2014
  • Котолевич Юлия Сергеевна
  • Сигаева Светлана Сергеевна
  • Цырульников Павел Григорьевич
  • Загоруйко Андрей Николаевич
  • Лопатин Сергей Алексеевич
RU2549906C1
СПОСОБ ОКИСЛЕНИЯ ДИОКСИДА СЕРЫ 2003
  • Бальжинимаев Б.С.
  • Паукштис Е.А.
  • Загоруйко А.Н.
  • Симонова Л.Г.
  • Гончаров В.Б.
RU2252915C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДОЖИГА ПРОПАНА НА СТЕКЛОВОЛОКНИСТОМ НОСИТЕЛЕ 2013
  • Бричков Антон Сергеевич
  • Бричкова Виктория Юрьевна
  • Козик Владимир Васильевич
  • Паукштис Евгений Александрович
  • Пармон Валентин Николаевич
RU2538206C1
АДСОРБЦИОННО-КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ОЧИСТКИ ГАЗОВ ОТ ТОКСИЧНЫХ ПРИМЕСЕЙ 2004
  • Загоруйко А.Н.
RU2263539C1
КАТАЛИЗАТОР ДЛЯ ХИМИЧЕСКИХ ПРОЦЕССОВ, НАПРИМЕР КОНВЕРСИИ АММИАКА, ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ, ДИОКСИДА СЕРЫ, ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ 1994
  • Барелко Виктор Владимирович
  • Хальзов Павел Иванович
  • Звягин Владимир Николаевич
  • Онищенко Владимир Яковлевич
RU2069584C1
СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ГАЗООБРАЗНЫХ ТОПЛИВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Загоруйко Андрей Николаевич
  • Лопатин Сергей Алексеевич
RU2674231C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕКСТИЛЬНОГО КАТАЛИЗАТОРА НА ПОДЛОЖКЕ ИЗ СТЕКЛОВОЛОКОН 1998
  • Витковская Р.Ф.
  • Терещенко Л.Я.
  • Гиздатуллина Г.К.
RU2134613C1
СПОСОБ ПРИГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОГО КАТАЛИЗАТОРА ОКИСЛЕНИЯ 2012
  • Потемкин Дмитрий Игоревич
  • Снытников Павел Валерьевич
  • Собянин Владимир Александрович
  • Семитут Евгений Юрьевич
  • Плюснин Павел Евгеньевич
  • Шубин Юрий Викторович
  • Макотченко Евгения Васильевна
  • Коренев Сергей Васильевич
RU2510620C1

Реферат патента 2017 года Способ приготовления микроволокнистого катализатора

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций. Изобретение может найти применение в процессах производства ценных химических продуктов и полупродуктов, а также при переработке и утилизации разнообразных газообразных и жидких отходов. Описан способ приготовления микроволокнистого катализатора в форме структурированных полотен из нитей, скрученных из микроволокон носителя с нанесенным активным компонентом, включающий стадии предварительной обработки нитей, изготовления тканных или плетенных полотен из нитей, пропитки предшественниками активных компонентов, их сушки и термообработки. Приготовление катализатора осуществляют в две стадии, при этом на первой стадии производят предварительную обработку нитей, пропитку нитей предшественниками активных компонентов, их сушку и термообработку, а на второй стадии из полученных нитей производят изготовление структурированных полотен. Технический результат - высокое равномерное распределение активного компонента по поверхности катализатора. 4 з.п. ф-лы, 4 пр.

Формула изобретения RU 2 633 369 C1

1. Способ приготовления микроволокнистого катализатора в форме структурированных полотен из нитей, скрученных из микроволокон носителя с нанесенным активным компонентом, включающий предварительную обработку нитей, изготовление тканных или плетенных полотен из нитей, пропитку предшественниками активных компонентов, их сушку и термообработку, отличающийся тем, что приготовление катализатора осуществляют в две стадии, при этом на первой стадии производят предварительную обработку нитей, пропитку нитей предшественниками активных компонентов, их сушку и термообработку, а на второй стадии из полученных нитей производят изготовление структурированных полотен.

2. Способ по п. 1, отличающийся тем, что на стадии предварительной обработки нитей можно производить промывку и обжиг нитей.

3. Способ по п. 2, отличающийся тем, что на стадии предварительной обработки нитей можно дополнительно наносить на нити слой вторичного носителя с развитой внутренней поверхностью, например диоксид кремния, оксид алюминия, диоксид титана или активированный углерод.

4. Способ по п. 1, отличающийся тем, что в качестве активного компонента используют благородные металлы, например платину, палладий, золото, серебро, и/или оксиды переходных металлов, например, никель железо, медь, хром, ванадий, кобальт, редкоземельные металлы.

5. Способ по п. 1, отличающийся тем, что для производства катализатора в качестве носителя используют нити толщиной от 0.1 до 5 мм, скрученные из стеклянных, минеральных, углеродных или полимерных волокон диаметром от 1 до 30 мкм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2633369C1

US 4605594 A1, 12.08.1986
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ЖИДКИХ И ГАЗООБРАЗНЫХ ВЕЩЕСТВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, ИЗДЕЛИЯ ИЗ НЕГО И УСТРОЙСТВА С ЭТИМ ФИЛЬТРУЮЩИМ МАТЕРИАЛОМ 1995
  • Васильев В.А.(Ru)
  • Клевцов Василий Николаевич
  • Кондратюк Петр Петрович
  • Литвинов Владимир Филиппович
  • Сергеев Владимир Петрович
  • Теленков И.И.(Ru)
  • Ткачук С.М.(Ru)
  • Чаюн Михаил Васильевич
RU2112582C1
US 6383972 B1, 07.05.2002
Вагон для однорельсовой железной дороги на столбах 1928
  • Волковский К.К.
SU16081A1
US 4366085 A1, 28.12.1982.

RU 2 633 369 C1

Авторы

Загоруйко Андрей Николаевич

Лопатин Сергей Алексеевич

Зажигалов Сергей Валерьевич

Писарев Данил Александрович

Баранов Дмитрий Васильевич

Микенин Павел Евгеньевич

Абдулла Осман Бырмагамбетович

Даты

2017-10-12Публикация

2016-11-03Подача