БИОПРИПОЙ ДЛЯ ЛАЗЕРНОЙ СВАРКИ БИОЛОГИЧЕСКИХ ТКАНЕЙ Российский патент 2017 года по МПК A61L27/44 B82Y40/00 

Описание патента на изобретение RU2636222C1

Изобретение относится к области лазерной техники, используемой в нанотехнологических целях, а именно к способам соединения биологических тканей под действием лазерного излучения.

Лазерная сварка обеспечивает ряд преимуществ относительно традиционных методов соединения биологических тканей (с использованием хирургических шовных материалов, например, иглы и нити). В частности, герметичность и стерильность раны, сосудистый анастомоз, практически незаметные рубцы на местах швов, быстрое соединение тканей и т.п. [1].

Биологический припой (биоприпой), который используется при лазерной сварке, в основном состоит из биологического материала в жидком состоянии, например водной дисперсии альбумина [2]. После завершения процесса лазерной сварки жидкая форма биоприпоя твердеет и в месте соединения биологических тканей образуется прочный шов.

Существующие лазерные биоприпои не обеспечивают должную прочность лазерного шва. Например, известно, что биоприпой для лазерной сварки на основе водной дисперсии альбумина позволяет реализовать прочность на разрыв лазерного шва ~0,05 кПа (свиная кожа) [3], или ~0,43 кПа (кишечник собаки) [4]. Такая прочность является неудовлетворительной, так как на несколько порядков уступает прочности швов, полученных хирургическими методами [5].

Известно, что биоприпой на основе наноматериала, в составе которого присутствует альбумин и углеродные нанотрубки, существенно увеличивает прочность лазерного шва [6 5,6]. При исследовании таких биоприпоев на хрящевой и кожной ткани значения их прочности на разрыв шва составили до 25-30% относительно прочности сплошной ткани в режиме in vitro. Достигнутые предельные значения уступают значениям прочности шва, полученным при традиционных методах сшивания [5].

Наиболее близко к предлагаемому изобретению находится биоприпой, используемый в способе лазерной сварки биологических тканей, характеризующийся тем, что содержит различные белки, выступающие в роли связующего вещества, а также наполнители, такие как поверхностно-активные вещества и многостенные углеродные нанотрубки [7] (прототип). Лазерная сварка с использованием предложенного биоприпоя требует высокой мощности излучения (десятки Ватт), кроме того, процесс сварки занимает несколько минут.

Задача изобретения - получение высокопрочного шва при соединении биологических тканей.

Указанная техническая задача решается тем, что в состав биоприпоя на основе водного раствора белка альбумина введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении компонентов, мас.%: альбумин 20-25, однослойные углеродные нанотрубки 0,02÷0,05, индоцианин зеленый 0,01, дистиллированная вода - остальное.

Сущность предлагаемого изобретения состоит в том, что при лазерной сварке из биоприпоя испаряется жидкостная компонента дисперсии, и он затвердевает, при этом происходит структуризация однослойных углеродных нанотрубок (ОУНТ) определенным образом, и тем самым образуется прочный шов на месте соединения тканей. При этом ОУНТ имеет преимущество относительно многослойных углеродных нанотрубок (МУНТ). Например, при высоком уровне диспергации нанотрубок и их одинаковом массовом процентном содержании в матрице биоприпоя на основе ОУНТ реализуется более высокая количественная концентрация нанотрубок в объеме матрицы, чем, в биоприпое на основе МУНТ. Следовательно, создание плотного каркаса в припое наоснове ОУНТ более вероятно, чем в припое на основе МУНТ. Медицинский краситель индоцианин зеленый (ИЦЗ) имеет выраженный максимум поглощения в области 800 нм, что совпадает с длиной волны генерации лазерного излучения (810 нм). Следовательно, данный краситель служит в качестве сильного поглотителя лазерного излучения в биоприпое, кроме этого, энергия излучения эффективно поглощается углеродными нанотрубками. Области, где нанотрубки касаются друг друга, происходит перегрев нанотрубок и сваривание их между собой. В результате образуется прочный каркас из углеродных нанотрубок в матрице из альбумина, что позволяет получить прочный сварной шов.

Практическая применимость предлагаемого способа иллюстрируется указанными ниже шагами изготовления водной дисперсии биоприпоя:

1. К дистиллированной воде добавляют ОУНТ в количестве 0,02-0,1 мас.%, после чего полученную дисперсию перемешивают в магнитной мешалке в течение 30 мин, а затем диспергируют в ультразвуковом диспергаторе при температуре ≤30°С в течение 30 мин до получения однородной дисперсии черного цвета.

2. В водную дисперсию ОУНТ вводят порошок бычий сывороточный альбумин (БСА) в концентрации 20-25 мас.% и затем дисперсию помещают в ультразвуковую баню и диспергируют при температуре ≤40°С в течение 60 мин до получения однородной дисперсии БСА/ОУНТ черного цвета.

3. В водную дисперсию БСА/ОУНТ вводят 0,01 мас.% ИЦЗ, дисперсию диспергируют в ультразвуковую бане при температуре ≤40°С в течение 60 мин.

4. Водную дисперсию БСА/ОУНТ/ИЦЗ деконтируют в течение 24 ч, фильтруют и переливают в другой сосуд.

5. Дисперсия БСА/ОУНТ/ИЦЗ является биоприпоем и используется при лазерной сварке.

6. На соединяемые поверхности тонким слоем наносят биоприпой и максимально приближают друг к другу («под лицо») так, чтобы в области предполагаемого шва практически не оставалось зазора. Лазерный луч диаметром ~0,8-1,0 мм проходит со скоростью 2-5 мм/с по поверхности предполагаемого шва с нанесенным припоем. В зависимости от состава свариваемых тканей подбирается режим работы лазера (диодный лазер с оптоволоконным выводом): удельная мощность излучения 0,02-0,1 МВт/м2, длина волны генерации 810 нм, режим генерации - непрерывный, импульсный. Эмпирический подбор режима лазера позволяет реализовать нужные механические параметры сварного шва.

В таблице 1 приведены результаты измерения (in vitro) прочности на разрыв лазерного шва для некоторых типов ткани (свиная кожа и бычий хрящ). Величины σm и σ показывают прочности на разрыв сплошной ткани и лазерного шва соответственно. Эти величины измерялись динамометром типа AIGUZP-500N с разрешением 0,1 Н, с учетом размеров биологических тканей. Образцам биологических тканей придавалась форма полосок с размерами: длина 25-30 мм, ширина 5-8 мм, толщина 1-2 мм.

На фиг. 1 показана типичная картина лазерного шва, полученная на сканирующем электронном микроскопе. Видны углеродные нанотрубки, которые запутаны или свернуты в жгуты и распределены практически однородно в объеме матрицы. Они создают каркасообразную структуру в матрице альбумина. Поскольку углеродные нанотрубки имеют высокие механические параметры, например высокую прочность на разрыв, следовательно, созданный ими каркас также является прочным. Созданию прочного каркаса способствует добавление ИЦЗ, так как данный краситель обеспечивает сильное поглощение лазерного излучения биоприпоем, перегрев углеродных нанотрубок и сваривание их между собой. В целом, лазерный шов, полученный с применением лазерного биоприпоя в составе БСА/ОУНТ/ИЦЗ, приобретает высокую прочность.

Таким образом, каркасообразная структура ОУНТ в матрице биоприпоя при лазерной сварке обеспечивает высокую механическую прочность шва, т.е. высокую прочность соединения биологических тканей.

Важными преимуществами биоприпоя, изготовленного предложенным способом, относительно известных материалов и прототипа являются [3, 4, 6, 7]:

- его матрица состоит из биологического материала (белок альбумин) и из наполнителей в виде одностенных углеродных нанотрубок и медицинского красителя индоцианина зеленого, и в целом наноматериал является биосовместимым;

- его состав 25 мас.% БСА/0,05 мас.% ОУНТ/0,01 мас. % ИЦЗ при лазерной сварке позволяет реализовать шов, прочность которого достигает до 40% относительно прочности соединяемых хрящевых тканей;

- низкое содержание ОУНТ подчеркивает высокую степень безопасности и биосовместимости материала;

- в его составе уменьшено содержание ОУНТ, а прочность лазерного шва значительно увеличена (см. табл. 1);

- удельная мощность (~0,02-0,1 МВт/м2) лазерного излучения для получения лазерного шва уменьшена в несколько раз;

- скорость лазерной сварки увеличена в несколько раз (~2-5 мм/с),

- диаметр пятна лазерного луча на месте шва 0,6-0,8 мм.

Достоинством биоприпоя для лазерной сварки, полученного предложенным способом, является его высокая эффективность, достигнутая благодаря высокой прочности на разрыв лазерного шва, низкому содержанию углеродных нанотрубок, низкой энергетической нагрузке лазерного излучения на свариваемые ткани и высокой скорости процесса сварки.

Предложенный биоприпой перспективен для применения как в традиционных хирургических процедурах, так и в сложных случаях, где важны снижение травматизма и герметизация шва, в частности при сварке мелких кровеносных сосудов и каналов, мягких тканей: печени, легких и др.

Таким образом, реализовано техническое решение задачи, поставленной в настоящем изобретении. Предложен способ приготовления биоприпоя для лазерной сварки на основе биологического материала альбумина и наполнителя из однослойных углеродных нанотрубок и медицинского красителя индоцианина зеленого. Биоприпой, представляющий собой наноматериал, является биосовместимым.

Источники информации

1. Sawyer P.N. Method for welding biological tissue. - US Patent No. 5,824,015.

2. Forer В., Vasilyev Т., Brosh Т., et al. Lasers in Surgery and Medicine, 9999, 1 (2005).

3. Simhon D., Halpern M., Brosh Т., and et al. Annals of surgery, 245 (2), 206-213 (2007).

4. Bleustein C.B., Felsen D., Poppas D.P. Lasers in Surgery and Medicine, 27 (2), 82-86 (2000).

5. Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей. М.: Техносфера. 2007. - 304 с.

6. Герасименко А.Ю., Ичкитидзе Л.П., Подгаецкий В.М., Пономарева О.В., Селищев С.В. / Нанокомпозитный припой для лазерной сварки биологических тканей // Известия вузов. Электроника. 2010. №4. С. 33-41.

7. Патент RU №2425700.

Похожие патенты RU2636222C1

название год авторы номер документа
БИОСОВМЕСТИМЫЙ НАНОМАТЕРИАЛ ДЛЯ ЛАЗЕРНОГО ВОССТАНОВЛЕНИЯ ЦЕЛОСТНОСТИ РАССЕЧЕННЫХ БИОЛОГИЧЕСКИХ ТКАНЕЙ 2017
  • Ичкитидзе Леван Павлович
  • Герасименко Александр Юрьевич
  • Римшан Ирина Борисовна
  • Журбина Наталья Николаевна
  • Подгаецкий Виталий Маркович
  • Селищев Сергей Васильевич
RU2657611C1
СПОСОБ ЛАЗЕРНОЙ СВАРКИ БИОЛОГИЧЕСКИХ ТКАНЕЙ 2010
  • Ичкитидзе Леван Павлович
  • Комлев Игорь Витальевич
  • Подгаецкий Виталий Маркович
  • Пономарева Ольга Вадимовна
  • Селищев Сергей Васильевич
  • Хролова Ольга Рафаиловна
RU2425700C1
Способ изготовления нанокомпозитного имплантата связки сустава 2019
  • Ичкитидзе Леван Павлович
  • Герасименко Александр Юрьевич
  • Журбина Наталья Николаевна
  • Василевский Павел Николаевич
  • Савельев Михаил Сергеевич
  • Полохин Александр Александрович
RU2744710C2
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА 2016
  • Ичкитидзе Леван Павлович
  • Герасименко Александр Юрьевич
  • Савельев Михаил Сергеевич
  • Подгаецкий Виталий Маркович
  • Журбина Наталья Николаевна
  • Спицына Светлана Сергеевна
  • Спицын Владимир Алексеевич
RU2633088C1
ТКАНЕИНЖЕНЕРНАЯ КОНСТРУКЦИЯ ДЛЯ РЕГЕНЕРАЦИИ СЕРДЕЧНОЙ ТКАНИ 2019
  • Ичкитидзе Леван Павлович
  • Герасименко Александр Юрьевич
  • Курилова Ульяна Евгеньевна
  • Терещенко Сергей Андреевич
  • Селищев Сергей Васильевич
RU2725860C1
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО НАНОСТРУКТУРИРОВАННОГО КОМПОЗИЦИОННОГО ЭЛЕКТРОПРОВОДЯЩЕГО МАТЕРИАЛА 2011
  • Ичкитидзе Леван Павлович
  • Селищев Сергей Васильевич
  • Герасименко Александр Юрьевич
  • Гуслянников Владимир Владимирович
  • Путря Борис Михайлович
RU2473368C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО КОМПОЗИЦИОННОГО ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ 2015
  • Ичкитидзе Леван Павлович
  • Селищев Сергей Васильевич
  • Подгаецкий Виталий Маркович
  • Герасименко Александр Юрьевич
  • Шаман Юрий Петрович
  • Кицюк Евгений Павлович
RU2606842C1
БИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ НА ОСНОВЕ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА 2017
  • Ичкитидзе Леван Павлович
  • Петухов Владимир Александрович
  • Герасименко Александр Юрьевич
  • Подгаецкий Виталий Маркович
  • Селищев Сергей Васильевич
RU2662060C1
ИСКУССТВЕННАЯ МЫШЦА ДЛЯ СЕРДЕЧНОЙ ТКАНИ 2017
  • Ичкитидзе Леван Павлович
  • Герасименко Александр Юрьевич
  • Терещенко Сергей Андреевич
  • Селищев Сергей Васильевич
RU2675062C1
УНИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ 2018
  • Ичкитидзе Леван Павлович
  • Герасименко Александр Юрьевич
  • Кицюк Евгений Павлович
  • Петухов Владимир Александрович
  • Селищев Сергей Васильевич
  • Терещенко Сергей Андреевич
RU2685570C1

Иллюстрации к изобретению RU 2 636 222 C1

Реферат патента 2017 года БИОПРИПОЙ ДЛЯ ЛАЗЕРНОЙ СВАРКИ БИОЛОГИЧЕСКИХ ТКАНЕЙ

Изобретение относится к медицине и касается биоприпоя для лазерной сварки биологических тканей. Биоприпой содержит водную дисперсионную основу белка альбумина. При этом в его состав введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении компонентов, мас.%: альбумин 20-25, однослойные углеродные нанотрубки 0,02÷0,05, индоцианин зеленый 0,01, дистиллированная вода - остальное. Изобретение обеспечивает снижение травматизма и герметизацию шва, в частности, при сварке мелких кровеносных сосудов и каналов, мягких тканей: печени, легких. 1 табл., 1 ил.

Формула изобретения RU 2 636 222 C1

Биоприпой, содержащий водную дисперсионную основу белка альбумина, отличающийся тем, что в состав введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении компонентов, мас.%: альбумин 20-25, однослойные углеродные нанотрубки 0,02÷0,05, индоцианин зеленый 0,01, дистиллированная вода - остальное.

Документы, цитированные в отчете о поиске Патент 2017 года RU2636222C1

СПОСОБ НАНОСТРУКТУРИРОВАНИЯ ОБЪЕМНЫХ БИОСОВМЕСТИМЫХ МАТЕРИАЛОВ 2007
  • Агеева Светлана Александровна
  • Бобринецкий Иван Иванович
  • Неволин Владимир Кириллович
  • Подгаецкий Виталий Маркович
  • Пономарева Ольга Вадимовна
  • Савранский Валерий Васильевич
  • Симунин Михаил Максимович
  • Селищев Сергей Васильевич
RU2347740C1
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО НАНОСТРУКТУРИРОВАННОГО КОМПОЗИЦИОННОГО ЭЛЕКТРОПРОВОДЯЩЕГО МАТЕРИАЛА 2011
  • Ичкитидзе Леван Павлович
  • Селищев Сергей Васильевич
  • Герасименко Александр Юрьевич
  • Гуслянников Владимир Владимирович
  • Путря Борис Михайлович
RU2473368C1
СПОСОБ ПОДАВЛЕНИЯ ПАТОГЕННЫХ И УСЛОВНО-ПАТОГЕННЫХ МИКРООРГАНИЗМОВ 2010
  • Тучин Валерий Викторович
  • Тучина Елена Святославна
RU2430757C1
ПРИМЕНЕНИЕ ИНДОЦИАНИНА В КАЧЕСТВЕ МАРКЕРА НАНОЧАСТИЦ 2015
  • Хазанова Елена Сергеевна
  • Ногай Сергей Юрьевич
  • Егоров Дмитрий Вячеславович
RU2599488C1
WO 2008070926 A1, 19.06.2008
А.Ю
ГЕРАСИМЕНКО и др
Перспективные наноматериалы с углеродными нанотрубками в биомедицинских приложениях
// Медицинская техника, 2014, N6 (288), с.23-27.

RU 2 636 222 C1

Авторы

Ичкитидзе Леван Павлович

Подгаецкий Виталий Маркович

Селищев Сергей Васильевич

Герасименко Александр Юрьевич

Спицына Светлана Сергеевна

Герасименко Лариса Викторовна

Спицын Владимир Алексеевич

Даты

2017-11-21Публикация

2016-12-22Подача