Изобретение относится к аналитической химии, в частности к количественному определению молочной кислоты как в чистом виде, так и в продуктах питания, биологических и культуральных жидкостях.
Эффективные и недорогие методы определения молочной кислоты могут найти широкое применение, прежде всего, для контроля процессов ферментаций бактериальных штаммов молочнокислых бактерий, которые традиционно используют для получения молочной кислоты, а также для контроля качества продуктов питания, сельскохозяйственного сырья и др.
Известен способ качественного определения молочной кислоты, основанный на реакции Уффельмана. Принцип метода заключается в том, что молочная кислота в присутствии фенолята железа (реактив Уффельмана), окрашенного в фиолетовый цвет, образует лактат железа желто-зеленого цвета [1]. Изменение окраски раствора с фиолетовой на желто-зеленую свидетельствует о присутствии молочной кислоты в исследуемом образце.
К недостаткам метода, основанного на реакции Уффельмана, можно отнести то, что он является качественным и не позволяет определить концентрацию молочной кислоты в исследуемом образце, а также то, что при проведении реакции образуется такое токсичное химическое вещество, как фенол, работа с которым требует особых мер предосторожности.
В настоящее время наиболее точными методами количественного определения молочной кислоты являются различные варианты высокоэффективной жидкостной хроматографии (ВЭЖХ), включая ионный (ИХ) [2], ион-парный (ИПХ) [3], ионоэксклюзионный (ИЭХ) [4] и обращенно-фазовый (ОФХ) [5].
Однако использование методов ВЭЖХ в рутинной практике ограничено тем, что для их осуществления требуется сложная подготовка проб, а также наличие дорогостоящего оборудования и высококвалифицированных специалистов.
Известен способ определения молочной кислоты, основанный на количественном окислении ее до ацетальдегида и определении последнего либо бисульфитным методом [6], либо окрашиванием п-гидроксидифенилом в присутствии металлических ионов [7].
Недостатком данной группы способов является то, что перед определением молочной кислоты необходимо проведение процедуры удаления примесей белков и углеводов с использованием фосфорно-вольфрамовой кислоты, сернокислой меди и оксида кальция. В качестве окислителей используют такие вещества, как перманганат калия, концентрированная серная кислота или церий, работа с которыми требует особых мер предосторожности. Процесс проведения измерения занимает несколько часов, при этом результаты могут быть недостаточно точными из-за неполного удаления примесей из исследуемого образца.
Известен также ферментативный способ количественного определения молочный кислоты [8], основанный на преобразовании молочной кислоты в присутствии НАД+ в пируват и восстановленную форму НАДН с использованием фермента лактатдегидрогеназы. Количество образовавшегося НАДН, которое пропорционально содержанию молочной кислоты, определяют спектрофотометрически измерением оптической плотности инкубационной смеси при длине волны 340 нм
Недостатки метода заключаются в необходимости использования дорогостоящих очищенных препаратов L- и D-лактатдегидрогеназ с известной активностью и дорогостоящего спектрофотометрического оборудования, способного работать в ультрафиолетовом диапазоне.
Кроме того, способ сложен в исполнении и требует большой аккуратности при проведении измерений из-за нестабильности НАД+ и НАДН.
Задачей, на решение которой направлено заявляемое изобретение, является расширение арсенала способов количественного определения молочной кислоты, в том числе в составе продуктов питания, биологических и культуральных жидкостях.
Поставленная задача решена тем, что разработан способ количественного определения молочной кислоты, включающий добавление исследуемого раствора к раствору хлорида железа(III), взятого в концентрации 0,1-0,3%, измерение оптической плотности полученного раствора при длине волны 380-405 нм и количественное определение концентрации лактата в исходном растворе с использованием калибровочного графика.
Способ основан на реакции взаимодействия хлорида железа(III) с лактат-ионами, входящими в состав молочной кислоты, в результате чего образуется раствор лактата железа, окрашенный в желто-зеленый цвет.
Авторы показали, что
- максимальное поглощение лактата железа(III) наблюдается при длине волны в интервале 380-405 нм, а поглощающая способность молочной кислоты в заданном диапазоне близка к нулю (фиг. 1);
- оптическая плотность окрашенного раствора пропорциональна концентрации молочной кислоты в интервале от 0,5 до 11 г/л, (фиг. 2);
- оптимальной для проведения анализа является концентрация хлорида железа в диапазоне от 0,1 до 0,3%;
- окраска продукта реакции - раствора лактата железа(III) при комнатной температуре (25±5°C) остается стабильной в интервале от 1 до 15 минут;
Выявленные закономерности дают возможность использовать для количественного определения молочной кислоты калибровочный график (фиг. 2).
Способ осуществляют следующим образом.
К раствору хлорида железа(III) добавляют исследуемый раствор, содержащий молочную кислоту в концентрации от 0,5 до 11 г/л, перемешивают и измеряют оптическую плотность окрашенного раствора при длине волны 380-405 нм против контроля - раствора хлорида железа(III). Реакцию и измерения проводят при комнатной температуре.
Диапазон концентраций хлорида железа и МК подбирают таким образом, чтобы значение полученной оптической плотности попадало в линейную область калибровочного графика. Для этого используют раствор хлорида железа с концентрацией 0,1-0,3%, а измерение оптической плотности осуществляют при длине волны в интервале 380-405 нм.
Концентрацию молочной кислоты вычисляют по калибровочному графику с учетом разведения исследуемого образца.
Обработку результатов проводят с использованием статистической программы Statistica 6.0. [9].
Изобретение проиллюстрировано следующими фигурами.
Фиг. 1 – Спектры поглощения a - молочная кислота (1%, контроль - дистиллированная вода); b - хлорид железа(III) (0,2%, контроль - дистиллированная вода); c - лактат железа(III) (контроль – 0,2% раствор хлорида железа(III)).
Фиг. 2 – Калибровочный график для определения концентрации молочной кислоты.
Пример 1. Построение калибровочного графика
Навеску 1,2 г молочной кислоты с известной концентрацией (89%, ρ 1,2 г/см3) помещают в мерную колбу и доводят водой до 10 мл. Получают стандартный раствор с концентрацией молочной кислоты 89 г/л.
На основании стандартного раствора готовят серию растворов молочной кислоты методом двукратных разведений.
Готовят 0,2% раствор хлорида железа(III), для чего навеску 0,3 г 6-водного хлорида железа(III) помещают в мерную колбу и доводят водой до 100 мл. Раствор перемешивают до полного растворения соли. Раствор должен иметь комнатную температуру (25±5°C).
К 2 мл 0,2% раствора хлорида железа(III) добавляют 50 мкл раствора молочной кислоты соответствующей концентрации, перемешивают. Оптическую плотность полученных окрашенных растворов измеряют с помощью спектрофотометра при длине волны 390 нм. В качестве контроля используют раствор - 2 мл 0,2% раствора хлорида железа(III). Данные зависимости светопоглощения окрашенных растворов от концентрации молочной кислоты, взятой на выполнение реакции, используют для построения калибровочного графика (фиг. 2).
Обработку результатов и построение калибровочного графика осуществляют с использованием статистической программы Statistica 6.0.
Выделяют линейный участок кривой, где оптическая плотность окрашенного раствора пропорциональна концентрации молочной кислоты в интервале от 0,5 до 11 г/л. Уравнение градуировочного графика имеет вид Б=0.1414А-0.0222, коэффициент корреляции 0.9999, уровень достоверности 0.000001, величина достоверности аппроксимации 0.9998 (фиг. 2).
Пример 2. Определение молочной кислоты в культуральной жидкости
Культуральную жидкость отделяют от клеток центрифугированием. Надосадочную жидкость разбавляют в 20 раз деионизированной водой.
К 2 мл 0,2% раствора хлорида железа(III) добавляют 50 мкл разбавленной в 20 раз культуральной жидкости, перемешивают и измеряют оптическую плотность окрашенного раствора при длине волны 390 нм против контроля (2 мл 0,2% раствора хлорида железа(III)). Реакцию и измерения проводят при комнатной температуре (25±5°C). Измеренная оптическая плотность равна 0,628.
Концентрацию молочной кислоты вычисляют по калибровочному графику с учетом 20-кратного разведения исследуемого образца культуральной жидкости.
Сравнение результатов определения молочной кислоты в культуральной жидкости, полученных предложенным спектрофотометрическим методом и методом ВЭЖХ, приведено в табл. 1.
Пример 3. Определение молочной кислоты в составе кисломолочного продукта
Сыворотку отделяют от осадка методом центрифугирования и разбавляют в 10 раз деионизированной водой.
К 2 мл 0,2% раствора хлорида железа(III) добавляют 50 мкл разбавленной в 10 раз сыворотки кисломолочного продукта, перемешивают и измеряют оптическую плотность окрашенного раствора при длине волны 390 нм против контроля. Измеренная оптическая плотность равна 0,109.
Концентрацию молочной кислоты вычисляют по калибровочному графику с учетом 10-кратного разведения исследуемого образца.
Сравнение результатов определения молочной кислоты в кисломолочном продукте, полученных предложенным спектрофотометрическим методом и методом ВЭЖХ, приведено в табл. 1.
Пример 4. Определение концентрации молочной кислоты в водном растворе
Навеску 1,2 г молочной кислоты с известной концентрацией (89%, ρ 1,2 г/см3) помещают в мерную колбу и доводят водой до 10 мл. Получают стандартный раствор с концентрацией молочной кислоты 89 г/л.
Стандартный раствор молочной кислоты разбавляют в 40 раз деионизированной водой.
К 2 мл 0,2% раствора хлорида железа(III) добавляют 50 мкл разбавленного в 40 раз стандартного водного раствора молочной кислоты, перемешивают и измеряют оптическую плотность окрашенного раствора при длине волны 390 нм против контроля. Измеренная оптическая плотность равна 0,601.
Концентрацию молочной кислоты вычисляют по калибровочному графику с учетом 40-кратного разведения исследуемого образца.
Сравнение результатов определения молочной кислоты в водном растворе, полученных предложенным спектрофотометрическим методом и методом ВЭЖХ, приведено в табл. 1.
Таким образом, показано, что предложенный способ позволяет проводить количественное определение молочной кислоты как в водном растворе, так и в составе многокомпонентных смесей, таких как культуральная жидкость или кисломолочный продукт.
Преимущества способа:
- позволяет проводить определение молочной кислоты в составе многокомпонентных смесей без сложной подготовки проб;
- точность определения;
- не требует использования опасных или токсичных веществ, работа с которыми требует особых мер предосторожности;
- не требует использования дорогостоящих реагентов и оборудования;
- минимальные временные затраты.
Источники информации
1. Matthews, А.Р. 1920. Physiological Chemistry. 3rd Ed., Wm. Wood and Co., New York.
2. Mima Y, Ohno H., Koh T. Bunseki Kagaku. 1994. 43. 10. C. 745.
3. Lebuhn M., Hartmann A. J. Chromatogr. 1993. 629. C. 255.
4. Lesh M.J., Wilkinson E.L., Zolfaghari M.R., Schreiber M.A. J. Liq. Chromatogr. 1993. 16. 11. C. 2415.
5. Ohara H., Hiraga T., Katasho I., Inuta T., Yoshida T. J. Ferm. Bioengineering. 1993. 75. C. 470.
6. Frledemann TE, Catonlo M & Shatter PA. I. Blot. Client. 73: 335-58, 1927.
7. S.B. Barker and William H. Summerson J. Biol. Chem, 1941, 138: 535-554.
8. Rodgers-Neame N.T. &. Blackwell R.E. Journal of Tissue Culture Methods Vol. 7, No. 4, 1982.
9. http://www.statsoft.ru.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ЖЕЛЕЗА | 2022 |
|
RU2784330C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ БИОЦИДНОГО АЗОТСОДЕРЖАЩЕГО ОРГАНИЧЕСКОГО СОЕДИНЕНИЯ В ВОДНОМ РАСТВОРЕ ЭТОГО СОЕДИНЕНИЯ | 2013 |
|
RU2567335C2 |
Способ количественного определения фурагина | 1989 |
|
SU1698716A1 |
СПОСОБ ТУРБИДИМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ЙОДИД-ИОНОВ | 2008 |
|
RU2377557C2 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ПРОИЗВОДНЫХ ФТОРХИНОЛОНОВ (ИЛИ ФЛОКСАЦИНОВ) | 2021 |
|
RU2776961C1 |
Способ количественного определения биоцидного азотсодержащего органического соединения гидразида изоникотиновой кислоты (изониазида) в водном растворе этого соединения | 2016 |
|
RU2633080C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ РОДАНИДА | 2016 |
|
RU2619442C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГИАЛУРОНИДАЗНОЙ АКТИВНОСТИ ЛЕКАРСТВЕННЫХ СРЕДСТВ С ИСПОЛЬЗОВАНИЕМ ЛИОФИЛИЗАТА ЛИДАЗЫ В КАЧЕСТВЕ РАБОЧЕГО СТАНДАРТНОГО ОБРАЗЦА | 2016 |
|
RU2649800C1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ПРОИЗВОДНЫХ МОРФОЛИНА | 2020 |
|
RU2740909C1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ ПРОИЗВОДНЫХ 4-ОКСИКУМАРИНА | 2023 |
|
RU2813185C1 |
Изобретение относится к аналитической химии, в частности к количественному определению молочной кислоты как в чистом виде, так и в продуктах питания, биологических и культуральных жидкостях. Способ спектрофотометрического определения молочной кислоты включает добавление исследуемого раствора к раствору хлорида железа(III), взятого в концентрации 0,1-0,3%, измерение оптической плотности полученного раствора при длине волны 380-405 нм и количественное определение концентрации лактата в исходном растворе с использованием калибровочного графика. 4 пр., 1 табл., 2 ил.
Способ спектрофотометрического определения молочной кислоты, включающий добавление исследуемого раствора к раствору хлорида железа(III), взятого в концентрации 0,1-0,3%, измерение оптической плотности полученного раствора при длине волны 380-405 нм и количественное определение концентрации лактата в исходном растворе с использованием калибровочного графика.
D | |||
Figenschou et al | |||
Spectrophotometric method for the determination of microquantities of lactic acid in biological material | |||
Analytical Biochemistry, July 1991, pages 308-312 | |||
WO 2013045443 A1, 04.04.2013 | |||
СПОСОБ ХРОМАТОГРАФИЧЕСКОГО ОПРЕДЕЛЕНИЯ МОЛОЧНОЙ КИСЛОТЫ | 2001 |
|
RU2190214C1 |
Авторы
Даты
2017-12-20—Публикация
2016-12-02—Подача