Способ совместного получения гексанового растворителя и циклопентана Российский патент 2017 года по МПК C07C7/04 C07C7/163 C07C9/15 C07C13/10 

Описание патента на изобретение RU2640208C1

Изобретение относится к области нефтехимии, а конкретнее к способу переработки гексансодержащей фракции, выделенной из широкой фракции легких углеводородов (ШФЛУ), для получения ценных продуктов, таких как гексановый растворитель полимеризационной чистоты и циклопентан, который можно использовать в качестве вспенивающего агента при производстве вспененного пенополиуретана и/или растворителя для полимеризации.

На большинстве российских заводов по переработке попутного нефтяного газа (ПНГ) производят легкие и тяжелые фракции разделением ПНГ. Легкие фракции - отбензиненный газ подаются в распределительные сети и магистральные газопроводы. Тяжелые фракции ШФЛУ поставляются на газоперерабатывающие заводы нефтехимических комплексов, где имеются газофракционные установки для выделения бутана, пропана, пентана, гексана и их смесей [Кирпичников П.А., Лиакумович А.Г., Победимский Д.Г., Попова Л.М. Химия и технология мономеров для синтетических каучуков: Учебное пособие для вузов. - Л.: Химия, 1981. - 264 с].

ШФЛУ, согласно ТУ 38-101-524-93, представляет смесь предельных углеводородов С26 и выше, которая для выделения товарных продуктов подвергается фракционированию на ректификационных колоннах с отбором товарных продуктов, таких как фракции пропана, бутана, изобутана, смеси пропана-бутана и газового бензина С5 и выше, гексана, содержание С6 в этой фракции составляет не более 15 мас. %.

Недостатками товарного гексана, выделяемого на установках фракционирования ШФЛУ, являются широкий диапазон кипения, что не позволяет без дополнительной очистки использовать его в качестве растворителя в производстве синтетических каучуков.

Известна установка по полезной модели РФ №120578, опубл. 27.09.2012, МПК B01D 53/00 (2006.01), на которой проводится фракционирование попутного нефтяного газа и получение бензина газового стабильного, смеси пропан-бутана и сухого отбензиненного газа. Недостатком полезной модели является то, что из состава бензина газового стабильного не выделяется фракция углеводородов С6 и выше, что ухудшает качество товарного продукта. Кроме того, теряется ценная фракция углеводородов С6 и выше, из которой можно получать ценные продукты нефтехимии, имеющие большое народно-хозяйственное значение.

Известны установки фракционирования по полезным моделям РФ №49609, опубл. 27.11.2005, МПК F25J 3/02 (2000.01) и №80544, опубл. 10.02.2009, МПК F25J 3/02 (2006.01), в которых предусмотрены блоки ректификационного разделения ШФЛУ с линиями вывода пропан-бутановой и пентан-гексановой фракций. Однако в данных установках не предусмотрен блок выделения С6-фракции в качестве отдельного потока.

Описана установка для разделения ШФЛУ с выделением гексановой фракции - патент РФ №2254316, опубл. 20.06.2005, МПК С07C 7/04 (2000.01). На данной установке также не предусмотрено разделение гексановой фракции для выделения гексанового растворителя и циклопентана, что не позволяет сделать ее более экономически выгодной, т.к. теряются ценные компоненты, имеющие спрос на рынке нефтехимических продуктов.

Наиболее близким является способ переработки С6-фракции, выделенной из ШФЛУ, по патенту РФ №2177496, опубл. 27.12.2001, МПК C10G 45/44 (2000.01). Целью этого изобретения является выделение только гексансодержащей фракции, при этом выделение циклопентана из нее не предусмотрено. Согласно этому изобретению гексансодержащую фракцию, выделенную из ШФЛУ, направляют в ректификационную колонну, с верха которой отбирают фракцию с концом кипения не выше 65°C, а из куба - фракцию с началом кипения не ниже 75°С, при этом колонна дополнительно снабжена трубопроводом для отвода боковой фракции с температурой кипения 65-75°C в реактор гидроочистки. Гидрированный продукт из реактора гидроочистки направляют в колонну ректификации, из кубовой части которой получают продукт с содержанием н-гексана не менее 50 мас. % и бензола 1,84-2,31 мас. % в количестве 2 т/ч, который используют в качестве растворителя для производства каучуков СКД-К (бутадиеновых каучуков на кобальтовом катализаторе). Схемой предусмотрена возможность направления части фракции после гидроочистки в рецикл. Верхний продукт колонны ректификации направляют на гидрирование во второй реактор гидроочистки, из которого гидрированный продукт отводят в колонну ректификации для выделения верхом изогексановой фракции, содержащей более 90 мас. % изогексанов, и кубом гексановой фракции с содержанием н-гексана не менее 37 мас. % и бензола до 0,02 мас. % в количестве 0,65 т/ч, которую используют в качестве растворителя для производства каучуков СКЭПТ (этилен-пропилен-диеновых каучуков) и других полимеров. Указано, что гидроочистку можно проводить в присутствии алюмоплатинового катализатора при температуре 250-300°C, давлении 2,0 МПа и объемном соотношении сырья с водородом, равном 1:80, при одинаковых условиях работы двух реакторов гидрирования.

Недостатком данного способа является то, что в первой колонне ректификации боковым трубопроводом выделяют узкую гексансодержащую фракцию ШФЛУ с температурой кипения 65-75°C, при этом верхний продукт с концом кипения не выше 65°C используют в качестве высокооктанового компонента для моторного топлива, при этом не выделяют такой ценный компонент как циклопентан, изначально содержащийся в гексансодержащей фракции ШФЛУ (температура кипения циклопентана составляет 49°C). Также в данном способе предусмотрено два реактора гидроочистки, которые загружены дорогим алюмоплатиновым катализатором, что увеличивает затраты. По этому способу в качестве целевых продуктов получают два растворителя, сильно различающихся по качеству: после первого реактора гидроочистки и последующей ректификации - гексановый растворитель с высоким содержанием бензола, а после второго реактора гидроочистки и ректификации - гексановый растворитель с низким содержанием бензола. При этом основное количество получаемого растворителя (порядка 75%) приходится на долю растворителя с высоким содержанием бензола, что делает данный способ слишком затратным по отношению к производству универсального гексанового растворителя с низким содержанием бензола, имеющего более высокий спрос на рынке нефтехимической продукции.

Технической задачей изобретения является одновременное получение из гексансодержащей фракции, выделенной из ШФЛУ, гексанового растворителя с содержанием бензола менее 0,02 мас. % и циклопентана.

Для решения поставленной задачи предлагается способ совместного получения гексанового растворителя с содержанием бензола менее 0,02 мас. % и циклопентана из гексансодержащей фракции, выделенной из ШФЛУ, которую направляют в колонну фракционирования, с верхней части которой выделяют гексансодержащую фракцию с концом кипения не выше 75°C. Гексансодержащую фракцию с концом кипения не выше 75°C в объемном соотношении с водородом, равном 1:500-700, направляют в реактор гидроочистки от непредельных и серосодержащих соединений в присутствии активированного водородом алюмоплатинового и/или алюмо-кобальт-молибденового катализаторов при температуре 250-350°C и давлении 1,0-4,5 МПа. Далее гидроочищенную гексансодержащую фракцию направляют в колонну ректификации для выделения с верха изогексановой фракции и из куба гексанового растворителя. Кубовый продукт направляют в реактор гидрирования для доочистки от остаточного количества непредельных и ароматических углеводородов, в частности от бензола, в присутствии активированного водородом никельсодержащего катализатора при температуре 70-200°C и давлении 0,1-1,0 МПа. В результате получают целевой продукт - гидроочищенный гексановый растворитель с содержанием бензола менее 0,02 мас. %, пригодный для использования в производствах синтетических каучуков, например бутадиеновых и этилен-пропилен-диеновых каучуков. Изогексановую фракцию (дистиллят колонны ректификации гидроочищенной гексансодержащей фракции) направляют в ректификационную колонну для выделения с верха пентановой фракции и из куба метилпентан-циклопентановой фракции. Метилпентан-циклопентановую фракцию направляют в следующую ректификационную колонну для выделения из куба метилпентановой фракции, которую можно использовать как компонент моторного топлива, и с верха целевой циклопентановой фракции, которую можно использовать в качестве вспенивающего агента при производстве пенополиуретана и/или растворителя для полимеризации.

Отличительными признаками изобретения являются следующие:

- в реактор гидроочистки направляют верхний продукт колонны фракционирования с концом кипения не выше 75°C в объемном соотношении с водородом, равном 1:500-700;

- гексановый растворитель, выделенный из куба колонны ректификации гидроочищенной гексансодержащей фракции, направляют на доочистку в реактор гидрирования и получают гексановый растворитель с содержанием бензола менее 0,02 мас. %;

- изогексановую фракцию, выделенную с верха колонны ректификации гидроочищенной гексансодержащей фракции, направляют в ректификационную колонну для выделения с верха пентановой фракции и из куба метилпентан-циклопентановой фракции;

- метилпентан-циклопентановую фракцию направляют в следующую ректификационную колонну для выделения из куба метилпентановой фракции и с верха целевой циклопентановой фракции.

- в реакторе гидроочистки проводят гидрирование верхнего продукта колонны фракционирования в присутствии активированного водородом алюмоплатинового и/или алюмо-кобальт-молибденового катализатора при температуре 250-350°C и давлении 1,0-4,5 МПа;

в реакторе гидрирования проводят доочистку гексанового растворителя, выделенного из куба колонны ректификации гидроочищенной гексансодержащей фракции, в присутствии активированного водородом никельсодержащего катализатора при температуре 70-200°C и давлении 0,1-1,0 МПа.

Заявляемый способ совместного получения гексанового растворителя и циклопентана в литературе не описан, что позволяет говорить о соответствии данного изобретения критерию патентоспособности «новизна». Возможность одновременного получения из гексансодержащей фракции, выделенной из ШФЛУ, гексанового растворителя с содержанием бензола менее 0,02 мас. % и циклопентана, реализуемая с помощью новых отличительных признаков, говорит об «изобретательском уровне» заявляемого технического решения. «Промышленная применимость» иллюстрируется описанием примеров реализации способа по предлагаемому изобретению, представленному на фигуре.

Пример 1. Гексансодержащую фракцию ШФЛУ расходом 15 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,03 мас. %; сумму углеводородов С5 - 8,63 мас. %, в том числе циклопентан - 7,50 мас. %; сумму углеводородов С6 - 77,25 мас. %, в том числе изогексан - 22,22 мас. %, н-гексан - 20,77 мас. %, бензол - 0,30 мас. %; сумму углеводородов С7 и выше - 14,09 мас. %, направляют в среднюю часть колонны фракционирования 1. Колонна фракционирования 1 имеет следующие параметры работы: температура верха - 73°C, температура куба - 111°C, давление верха - 0,5 кгс/см2 (избыточное). Из куба колонны фракционирования 1 отбирают фракцию с началом кипения не ниже 75°C расходом 7 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,01 мас. %; сумму углеводородов С5 - 1,06 мас. %, в том числе циклопентан - 1,05 мас. %; сумму углеводородов С6 - 70,94 мас. %, в том числе изогексан - 4,29 мас. %, н-гексан - 10,42 мас. %, бензол - 0,07 мас. %; сумму углеводородов С7 и выше - 27,99 мас. %, которую направляют на дальнейшее использование. Из верхней части колонны фракционирования 1 выделяют фракцию с концом кипения не выше 75°C расходом 8 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,05 мас. %; сумму углеводородов С5 - 15,25 мас. %, в том числе циклопентан - 13,14 мас. %; сумму углеводородов С6 - 82,77 мас. %, в том числе изогексан - 37,91 мас. %, н-гексан - 29,83 мас. %, бензол - 0,51 мас. %; сумму углеводородов С7 и выше - 1,93 мас. %, которую направляют в верхнюю часть реактора гидроочистки 2. В реакторе гидроочистки 2 происходит гидрирование от непредельных и серосодержащих соединений на активированном водородом алюмоплатиновом катализаторе ИП-62М (ТУ 38.10173-88) при температуре 250°C, давлении 1,0 МПа, объемной скорости подачи сырья 0,7 ч-1, объемном соотношении водород : сырье = 500:1. В результате получают гидрогенизат с остаточным содержанием бензола 0,38 мас. %. Гидрированный продукт расходом 8 т/ч из нижней части реактора гидроочистки 2 направляют в среднюю часть ректификационной колонны 3. Ректификационная колонна 3 имеет следующие параметры работы: температура верха - 96°C, температура куба - 123°C, давление верха - 3,0 кгс/см2 (избыточное). Из куба ректификационной колонны 3 выделяют гексановый растворитель расходом 6 т/ч, содержащий в своем составе: циклопентан - 2,92 мас. %; сумму углеводородов С6 - 94,51 мас. %, в том числе изогексан - 34,86 мас. %, н-гексан - 39,63 мас. %, бензол - 0,51 мас. %; сумму углеводородов С7 и выше - 2,57 мас. %, который направляют в нижнюю часть реактора гидрирования 4. В реакторе гидрирования 4 происходит доочистка гексанового растворителя от остаточного количества непредельных и ароматических углеводородов, в частности от бензола, в присутствии активированного водородом катализатора «никель на кизельгуре» (ТУ 2172-033-73776139-2015) при температуре 70°С, давлении 0,1 МПа, объемной скорости подачи сырья 0,7 ч-1, объемном соотношении водород : сырье = 140:1, с верхней части которого получают целевой продукт - гидроочищенный гексановый растворитель с содержанием н-гексана 39,61 мас. % и бензола 0,01 мас. %, пригодный для использования в производствах синтетических каучуков, например бутадиеновых и этилен-пропилен-диеновых каучуков. С верхней части ректификационной колонны 3 выделяют изогексановую фракцию расходом 2 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,20 мас. %; сумму углеводородов С5 - 52,25 мас. %, в том числе циклопентан - 43,78 мас. %; сумму углеводородов С6 - 47,55 мас. %, в том числе изогексан - 47,06 мас. %, н-гексан - 0,42 мас. %, которую направляют в среднюю часть ректификационной колонны 5. Ректификационная колонна 5 имеет следующие параметры работы: температура верха - 39°C, температура куба - 64°C, давление верха - 0,2 кгс/см2 (избыточное). С верха ректификационной колонны 5 выделяют пентановую фракцию (фракцию с температурой кипения ниже циклопентана) расходом 167 кг/ч, содержащую в своем составе: сумму углеводородов С4 -2,40 мас. %; сумму углеводородов С5 - 97,47 мас. %, в том числе циклопентан - 0,98 мас. %; изогексан - 0,13 мас. %, которую направляют на дальнейшее использование. Из куба ректификационной колонны 5 выделяют метилпентан-циклопентановую фракцию расходом 1833 кг/ч, содержащую в своем составе: сумму углеводородов С5 - 48,13 мас. %, в том числе циклопентан - 47,68 мас. %; сумму углеводородов С6 - 51,87 мас. %, в том числе изогексан - 51,34 мас. %, н-гексан - 0,46 мас. %, которую направляют в среднюю часть ректификационной колонны 6. Ректификационная колонна 6 имеет следующие параметры работы: температура верха - 87°C, температура куба - 104°C, давление верха - 2,0 кгс/см2 (избыточное). Из куба ректификационной колонны 6 выделяют метилпентановую фракцию (фракцию с температурой кипения выше циклопентана) расходом 801 кг/ч, содержащую в своем составе: циклопентан - 0,37 мас. %; сумму углеводородов С6 - 99,63 мас. %, в том числе изогексан - 98,41 мас. %, н-гексан - 1,05 мас. %, которую направляют на дальнейшее использование. С верхней части ректификационной колонны 6 выделяют товарную циклопентановую фракцию расходом 1032 кг/ч, содержащую в своем составе: сумму углеводородов С5 - 85,20 мас. %, в том числе циклопентан - 84,40 мас. %; изогексан - 14,80 мас. %, которую можно использовать в качестве вспенивающего агента при производстве пенополиуретана и/или растворителя для полимеризации.

Пример 2. Гексансодержащую фракцию ШФЛУ расходом 18 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,02 мас. %; сумму углеводородов С5 - 8,01 мас. %, в том числе циклопентан - 6,98 мас. %; сумму углеводородов С6 - 73,45 мас. %, в том числе изогексан - 23,47 мас. %, н-гексан - 21,41 мас. %, бензол - 0,74 мас. %; сумму углеводородов С7 и выше - 18,52 мас. %, направляют в среднюю часть колонны фракционирования 1. Колонна фракционирования 1 имеет следующие параметры работы: температура верха - 73°C, температура куба - 115°C, давление верха - 0,5 кгс/см2 (избыточное). Из куба колонны фракционирования 1 отбирают фракцию с началом кипения не ниже 75°C расходом 9,31 т/ч, содержащую в своем составе: сумму углеводородов С5 - 0,86 мас. %, в том числе циклопентан - 0,85 мас. %; сумму углеводородов С6 - 64,73 мас. %, в том числе изогексан - 3,76 мас. %, н-гексан - 9,06 мас. %, бензол - 0,09 мас. %; сумму углеводородов С7 и выше - 34,41 мас. %, которую направляют на дальнейшее использование. Из верхней части колонны фракционирования 1 выделяют фракцию с концом кипения не выше 75°C расходом 8,69 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,04 мас. %; сумму углеводородов С5 - 15,66 мас. %, в том числе циклопентан - 13,55 мас. %; сумму углеводородов С6 - 82,81 мас. %, в том числе изогексан - 44,58 мас. %, н-гексан - 34,64 мас. %, бензол - 1,43 мас. %; сумму углеводородов С7 и выше - 1,49 мас. %, которую направляют в верхнюю часть реактора гидроочистки 2. В реакторе гидроочистки 2 происходит гидрирование от непредельных и серосодержащих соединений на активированном водородом алюмо-кобальт-молибденовом катализаторе АКМ (ТУ 38.101194-96) при температуре 350°C, давлении 4,5 МПа, объемной скорости подачи сырья 0,7 ч-1, объемном соотношении водород : сырье = 700:1. В результате получают гидрогенизат с остаточным содержанием бензола 0,98 мас. %. Гидрированный продукт расходом 8,69 т/ч из нижней части реактора гидроочистки 2 направляют в среднюю часть ректификационной колонны 3. Ректификационная колонна 3 имеет следующие параметры работы: температура верха - 96°C, температура куба - 120°C, давление верха - 3,0 кгс/см (избыточное). Из куба ректификационной колонны 3 выделяют гексановый растворитель расходом 6,45 т/ч, содержащий в своем составе: циклопентан - 3,05 мас. %; сумму углеводородов С6 - 94,94 мас. %, в том числе изогексан - 46,10 мас. %, н-гексан - 46,50 мас. %, бензол - 1,32 мас. %; сумму углеводородов С7 и выше - 2,01 мас. %, который направляют в нижнюю часть реактора гидрирования 4. В реакторе гидрирования 4 происходит доочистка гексанового растворителя от остаточного количества непредельных и ароматических углеводородов, в частности от бензола, в присутствии активированного водородом катализатора «никель на кизельгуре» (ТУ 2172-033-73776139-2015) при температуре 200°C, давлении 1,0 МПа, объемной скорости подачи сырья 0,7 ч-1, объемном соотношении водород : сырье = 190:1, с верхней части которого получают целевой продукт - гидроочищенный гексановый растворитель с содержанием н-гексана 46,46 мас. % и бензола 0,01 мас. %, пригодный для использования в производствах синтетических каучуков, например бутадиеновых и этилен-пропилен-диеновых каучуков. С верхней части ректификационной колонны 3 выделяют изогексановую фракцию расходом 2,24 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,14 мас. %; сумму углеводородов С5 - 51,98 мас. %, в том числе циклопентан - 43,77 мас. %; сумму углеводородов С6 - 47,88 мас. %, в том числе изогексан - 40,20 мас. %, н-гексан - 0,47 мас. %, которую направляют в среднюю часть ректификационной колонны 5. Ректификационная колонна 5 имеет следующие параметры работы: температура верха - 39°C, температура куба - 66°C, давление верха - 0,2 кгс/см2 (избыточное). С верха ректификационной колонны 5 выделяют пентановую фракцию (фракцию с температурой кипения ниже циклопентана) расходом 177 кг/ч, содержащую в своем составе: сумму углеводородов С4 - 1,81 мас. %; сумму углеводородов С5 - 98,03 мас. %, в том числе циклопентан - 1,31 мас. %; изогексан - 0,16 мас. %, которую направляют на дальнейшее использование. Из куба ректификационной колонны 5 выделяют метилпентан-циклопентановую фракцию расходом 2063 кг/ч, содержащую в своем составе: сумму углеводородов С5 - 48,03 мас. %, в том числе циклопентан - 47,41 мас. %; сумму углеводородов С6 - 51,97 мас. %, в том числе изогексан - 43,63 мас. %, н-гексан - 0,51 мас. %, которую направляют в среднюю часть ректификационной колонны 6. Ректификационная колонна 6 имеет следующие параметры работы: температура верха - 87°C, температура куба - 101°C, давление верха - 2,0 кгс/см2 (избыточное). Из куба ректификационной колонны 6 выделяют метилпентановую фракцию (фракцию с температурой кипения выше циклопентана) расходом 902 кг/ч, содержащую в своем составе: циклопентан - 0,43 мас. %; сумму углеводородов С6 - 99,57 мас. %, в том числе изогексан - 80,51 мас. %, н-гексан - 1,17 мас. %, которую направляют на дальнейшее использование. С верхней части ректификационной колонны 6 выделяют товарную циклопентановую фракцию расходом 1161 кг/ч, содержащую в своем составе: сумму углеводородов С5 - 85,01 мас. %, в том числе циклопентан - 83,91 мас. %; изогексан - 14,99 мас. %, которую можно использовать в качестве вспенивающего агента при производстве пенополиуретана и/или растворителя для полимеризации.

Пример 3. Гексансодержащую фракцию ШФЛУ расходом 17 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,02 мас. %; сумму углеводородов С5 - 7,99 мас. %, в том числе циклопентан - 6,80 мас. %; сумму углеводородов С6 - 75,11 мас. %, в том числе изогексан - 22,36 мас. %, н-гексан - 20,97 мас. %, бензол - 0,44 мас. %; сумму углеводородов С7 и выше - 16,88 мас. %, направляют в среднюю часть колонны фракционирования 1. Колонна фракционирования 1 имеет следующие параметры работы: температура верха - 73°C, температура куба - 113°C, давление верха - 0,5 кгс/см2 (избыточное). Из куба колонны фракционирования 1 отбирают фракцию с началом кипения не ниже 75°C расходом 8,3 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,01 мас. %; сумму углеводородов С5 - 0,94 мас. %, в том числе циклопентан - 0,93 мас. %; сумму углеводородов С6 - 64,98 мас. %, в том числе изогексан - 3,79 мас. %, н-гексан - 9,43 мас. %, бензол - 0,09 мас. %; сумму углеводородов С7 и выше - 34,07 мас. %, которую направляют на дальнейшее использование. Из верхней части колонны фракционирования 1 выделяют фракцию с концом кипения не выше 75°C расходом 8,7 т/ч, содержащую в своем составе: сумму углеводородов С4 - 0,04 мас. %; сумму углеводородов С5 - 14,72 мас. %, в том числе циклопентан - 12,41 мас. %; сумму углеводородов С6 - 84,76 мас. %, в том числе изогексан - 40,07 мас. %, н-гексан - 31,97 мас. %, бензол - 0,78 мас. %; сумму углеводородов С7 и выше - 0,48 мас. %, которую направляют в верхнюю часть реактора гидроочистки 2. В реакторе гидроочистки 2 происходит гидрирование от непредельных и серосодержащих соединений на активированных водородом алюмо-кобальт-молибденовом АКМ (ТУ 38.101194-96) и алюмоплатиновом ИП-62М (ТУ 38.10173-88) катализаторах при температуре 290°C, давлении 3,0 МПа, объемной скорости подачи сырья 0,7 ч-1, объемном соотношении водород : сырье = 600:1. Реактор гидроочистки 2 загружен послойно: верхний слой - алюмоплатиновый катализатор, нижний слой - алюмо-кобальт-молибденовый катализатор. В результате получают гидрогенизат с остаточным содержанием бензола 0,52 мас. %. Гидрированный продукт расходом 8,7 т/ч из нижней части реактора гидроочистки 2 направляют в среднюю часть ректификационной колонны 3. Ректификационная колонна 3 имеет следующие параметры работы: температура верха - 96°C, температура куба - 118°C, давление верха - 3,0 кгс/см2 (избыточное). Из куба ректификационной колонны 3 выделяют гексановый растворитель расходом 6575 кг/ч, содержащий в своем составе: циклопентан - 2,25 мас. %; сумму углеводородов С6 - 97,11 мас. %, в том числе изогексан - 40,08 мас. %, н-гексан - 42,16 мас. %, бензол - 0,69 мас. %; сумму углеводородов С7 и выше - 0,64 мас. %, который направляют в нижнюю часть реактора гидрирования 4. В реакторе гидрирования 4 происходит доочистка гексанового растворителя от остаточного количества непредельных и ароматических углеводородов, в частности от бензола, в присутствии активированного водородом катализатора «никель на кизельгуре» (ТУ 2172-033-73776139-2015) при температуре 140°C, давлении 0,45 МПа, объемной скорости подачи сырья 0,7 ч-1, объемном соотношении водород : сырье = 160:1, с верхней части которого получают целевой продукт - гидроочищенный гексановый растворитель с содержанием н-гексана 42,14 мас. % и бензола 0,01 мас. %, пригодный для использования в производствах синтетических каучуков, например бутадиеновых и этилен-пропилен-диеновых каучуков. С верхней части ректификационной колонны 3 выделяют изогексановую фракцию расходом 2125 кг/ч, содержащую в своем составе: сумму углеводородов С4 - 0,17 мас. %; сумму углеводородов С5 -53,28 мас. %), в том числе циклопентан - 43,85 мас. %; сумму углеводородов С6 - 46,55 мас. %, в том числе изогексан - 40,03 мас. %, н-гексан - 0,45 мас. %, которую направляют в среднюю часть ректификационной колонны 5. Ректификационная колонна 5 имеет следующие параметры работы: температура верха - 39°C, температура куба - 63°C, давление верха - 0,2 кгс/см2 (избыточное). С верха ректификационной колонны 5 выделяют пентановую фракцию (фракцию с температурой кипения ниже циклопентана) расходом 172 кг/ч, содержащую в своем составе: сумму углеводородов С4 - 2,12 мас. %; сумму углеводородов С5 - 97,73 мас. %, в том числе циклопентан - 1,30 мас. %; изогексан - 0,15 мас. %, которую направляют на дальнейшее использование. Из куба ректификационной колонны 5 выделяют метилпентан-циклопентановую фракцию расходом 1953 кг/ч, содержащую в своем составе: сумму углеводородов С5 - 49,36 мас. %, в том числе циклопентан - 47,60 мас. %; сумму углеводородов С6 - 50,64 мас. %, в том числе изогексан - 43,53 мас. %, н-гексан - 0,48 мас. %, которую направляют в среднюю часть ректификационной колонны 6. Ректификационная колонна 6 имеет следующие параметры работы: температура верха - 87°C, температура куба - 100°C, давление верха - 2,0 кгс/см2 (избыточное). Из куба ректификационной колонны 6 выделяют метилпентановую фракцию (фракцию с температурой кипения выше циклопентана) расходом 823 кг/ч, содержащую в своем составе: циклопентан - 0,46 мас. %; сумму углеводородов С6 - 99,54 мас. %, в том числе изогексан - 82,70 мас. %, н-гексан - 1,15 мас. %, которую направляют на дальнейшее использование. С верхней части ректификационной колонны 6 выделяют товарную циклопентановую фракцию расходом 1130 кг/ч, содержащую в своем составе: сумму углеводородов С5 - 84,98 мас. %, в том числе циклопентан - 81,93 мас. %; изогексан - 15,02 мас. %, которую можно использовать в качестве вспенивающего агента при производстве пенополиуретана и/или растворителя для полимеризации.

Составы фракций и их количество, а также режимы работы оборудования, описанные в примерах изобретения, могут меняться в зависимости от состава сырья, и не являются единственно возможными.

Таким образом, способ по заявляемому изобретению позволяет достичь:

- выделение с верха колонны фракционирования фракции с концом кипения не выше 75°C из гексансодержащей фракции ШФЛУ позволяет переработать ее в ряд ценных продуктов при помощи специально разработанной в данном изобретении технологической схемы и специально подобранным условиям переработки;

- направление верхнего продукта колонны фракционирования с концом кипения не выше 75°C на гидрирование от непредельных и серосодержащих соединений в реактор гидроочистки в специально подобранном объемном соотношении с водородом в присутствии активированного водородом алюмоплатинового и/или алюмо-кобальт-молибденового катализаторов при специально подобранных режимах (давление, температура), позволяет улучшить эффективность процесса гидрирования, а также снизить затраты на проведение процесса, за счет исключения рециркуляции гидроочищенной фракции;

- направление гексанового растворителя, выделенного из куба колонны ректификации гидроочищенной гексансодержащей фракции, на доочистку в реактор гидрирования от остаточного количества непредельных и ароматических углеводородов, в частности от бензола, в присутствии активированного водородом никельсодержащего катализатора в специально подобранном температурном интервале и давлении, позволяет в максимальном количестве получить целевой продукт - гексановый растворитель с содержанием бензола менее 0,02 мас. %, пригодный для использования в производствах синтетических каучуков, например бутадиеновых и этилен-пропилен-диеновых каучуков;

- использование никельсодержащего катализатора в реакторе гидрирования гексанового растворителя, в отличие от дорогостоящего алюмоплатинового катализатора, как это заявлено в прототипе, позволяет снизить затраты на катализатор;

- направление изогексановой фракции, выделенной с верха колонны ректификации гидроочищенной гексансодержащей фракции, в ректификационную колонну для разделения пентановой и метилпентан-циклопентановой фракций, с направлением метилпентан-циклопентановой фракции в следующую ректификационную колонну позволяет выделить кубовым продуктом метилпентановую фракцию и верхним продуктом целевую циклопентановую фракцию, пригодную для использования в качестве вспенивающего агента при производстве пенополиуретана и/или растворителя для полимеризации.

Похожие патенты RU2640208C1

название год авторы номер документа
Способ совместного получения циклогексана и гексанового растворителя 2018
  • Гильмуллин Ринат Раисович
  • Березкина Марина Васильевна
RU2673550C1
СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ РАСТВОРИТЕЛЕЙ ПОЛИМЕРИЗАЦИОННОЙ ЧИСТОТЫ И ВЫСОКООКТАНОВОЙ ДОБАВКИ К ТОПЛИВАМ 2000
  • Зиятдинов А.Ш.
  • Тульчинский Э.А.
  • Мальцев Л.В.
  • Милославский Г.Ю.
  • Садриева Ф.М.
  • Вафина С.Ф.
  • Ильин С.Г.
RU2177496C1
Способ комплексной переработки побочных продуктов процесса выделения изопрена из фракции C пиролиза 2017
  • Гильмуллин Ринат Раисович
  • Березкина Марина Васильевна
RU2659079C1
Способ получения циклопентана 2016
  • Шарифуллин Ильфат Габдулвахитович
  • Сахабутдинов Анас Гаптынурович
  • Амирханов Ахтям Талипович
  • Мисбахов Ильяс Рафикович
  • Беланогов Игорь Анатольевич
  • Шепелин Владимир Александрович
  • Гильмуллин Ринат Раисович
RU2618233C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВЫХ ИЗОКОМПОНЕНТОВ БЕНЗИНА 2006
  • Боруцкий Павел Николаевич
  • Марышев Владимир Борисович
  • Сорокин Илья Иванович
  • Ежов Валерий Викторович
  • Мелехин Владимир Владимирович
  • Камалов Камил Гарифович
  • Муращенко Марина Геннадьевна
  • Чернышов Роман Геннадьевич
  • Дегтярев Сергей Геннадьевич
RU2307820C1
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРИТЕЛЯ ПОЛИМЕРИЗАЦИОННОЙ ЧИСТОТЫ 2001
  • Зиятдинов А.Ш.
  • Садриева Ф.М.
  • Мальцев Л.В.
  • Милославский Г.Ю.
  • Вафина С.Ф.
  • Бурганов Т.Г.
  • Ильин С.Г.
RU2190660C1
Способ изомеризации легких бензиновых фракций 2017
  • Мнушкин Игорь Анатольевич
RU2646751C1
Способ разделения бензиновых фракций в процессе изомеризации 2018
  • Мнушкин Игорь Анатольевич
RU2680377C1
СПОСОБ РАЗДЕЛЕНИЯ ИЗОПЕНТАН-ПЕНТАН-ГЕКСАНОВОЙ ФРАКЦИИ 2012
  • Мнушкин Игорь Анатольевич
  • Ханнанов Виль Рафилевич
  • Гасанова Олеся Игоревна
RU2478601C1
СПОСОБ ОЧИСТКИ БЕНЗОЛА ОТ ПРИМЕСЕЙ ПРЕДЕЛЬНЫХ И НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ 1999
  • Пантух Б.И.
  • Сурков В.Д.
  • Егоричева С.А.
  • Мишин В.А.
RU2155176C1

Иллюстрации к изобретению RU 2 640 208 C1

Реферат патента 2017 года Способ совместного получения гексанового растворителя и циклопентана

Изобретение относится к способу совместного получения гексанового растворителя и циклопентана из гексансодержащей фракции, выделенной из широкой фракции легких углеводородов, включающий выделение в колонне фракционирования гексансодержащей фракции, гидроочистку гексансодержащей фракции, ректификацию гидроочищенной гексансодержащей фракции для выделения изогексановой фракции и гексанового растворителя. Способ характеризуется тем, что в реактор гидроочистки направляют верхний продукт колонны фракционирования с концом кипения не выше 75°C в объемном соотношении с водородом, равном 1:500-700, а гексановый растворитель, выделенный из куба колонны ректификации гидроочищенной гексансодержащей фракции, направляют на доочистку в реактор гидрирования и получают гексановый растворитель с содержанием бензола менее 0,02 мас. %, а изогексановую фракцию, выделенную с верха колонны ректификации гидроочищенной гексансодержащей фракции, направляют в ректификационную колонну для выделения с верха пентановой фракции и из куба метилпентан-циклопентановой фракции, которую направляют в следующую ректификационную колонну для выделения из куба метилпентановой фракции и с верха целевой циклопентановой фракции. Технической задачей изобретения является одновременное получение из гексансодержащей фракции, выделенной из ШФЛУ, гексанового растворителя с содержанием бензола менее 0,02 мас. % и циклопентана. 2 з.п. ф-лы, 1 ил., 3 пр.

Формула изобретения RU 2 640 208 C1

1. Способ совместного получения гексанового растворителя и циклопентана из гексансодержащей фракции, выделенной из широкой фракции легких углеводородов, включающий выделение в колонне фракционирования гексансодержащей фракции, гидроочистку гексансодержащей фракции, ректификацию гидроочищенной гексансодержащей фракции для выделения изогексановой фракции и гексанового растворителя, отличающийся тем, что в реактор гидроочистки направляют верхний продукт колонны фракционирования с концом кипения не выше 75°C в объемном соотношении с водородом, равном 1:500-700, а гексановый растворитель, выделенный из куба колонны ректификации гидроочищенной гексансодержащей фракции, направляют на доочистку в реактор гидрирования и получают гексановый растворитель с содержанием бензола менее 0,02 мас. %, а изогексановую фракцию, выделенную с верха колонны ректификации гидроочищенной гексансодержащей фракции, направляют в ректификационную колонну для выделения с верха пентановой фракции и из куба метилпентан-циклопентановой фракции, которую направляют в следующую ректификационную колонну для выделения из куба метилпентановой фракции и с верха целевой циклопентановой фракции.

2. Способ по п. 1, отличающийся тем, что в реакторе гидроочистки проводят гидрирование верхнего продукта колонны фракционирования в присутствии активированного водородом алюмоплатинового и/или алюмо-кобальт-молибденового катализатора при температуре 250-350°C и давлении 1,0-4,5 МПа.

3. Способ по п. 1, отличающийся тем, что в реакторе гидрирования проводят доочистку гексанового растворителя, выделенного из куба колонны ректификации гидроочищенной гексансодержащей фракции, в присутствии активированного водородом никельсодержащего катализатора при температуре 70-200°C и давлении 0,1-1,0 МПа.

Документы, цитированные в отчете о поиске Патент 2017 года RU2640208C1

RU 96122452 A1, 10.06.1997
RU 2002113475 A, 27.11.2003
Способ получения циклопентана 2016
  • Шарифуллин Ильфат Габдулвахитович
  • Сахабутдинов Анас Гаптынурович
  • Амирханов Ахтям Талипович
  • Мисбахов Ильяс Рафикович
  • Беланогов Игорь Анатольевич
  • Шепелин Владимир Александрович
  • Гильмуллин Ринат Раисович
RU2618233C1
CN 103588603 A, 19.02.2014
CN 103664446 A, 26.03.2014
CN 103242121 B, 29.07.2015.

RU 2 640 208 C1

Авторы

Гильмуллин Ринат Раисович

Березкина Марина Васильевна

Прокофьев Алексей Юрьевич

Даты

2017-12-27Публикация

2017-07-11Подача