СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ПРИРОДНОЛЕГИРОВАННОГО ВАНАДИЕВОГО ЧУГУНА Российский патент 2018 года по МПК C21C5/28 C21B3/06 C21C5/36 

Описание патента на изобретение RU2641436C1

Изобретение относится к черной металлургии, конкретнее к извлечению ванадия из природнолегированного ванадиевого чугуна в товарный ванадиевый шлак на первой стадии кислородно-конвертерного дуплекс-процесса.

Ванадиевый шлак, получаемый на первой стадии кислородно-конвертерного дуплекс-процесса, является основным сырьем для производства феррованадия. В ходе кислородной продувки ванадиевого чугуна в конвертере происходят процессы окисления углерода и шлакообразующих примесей чугуна – кремния, титана, марганца, хрома и в том числе ванадия с выделением тепла. При увеличении температуры металлической ванны по ходу кислородной продувки выше температурного порога скорости обезуглероживания (1350 – 1450°C) реакции окисления углерода резко ускоряются, а процессы деванадации затормаживаются. Для обеспечения низкотемпературного режима конвертерной плавки и извлечения ванадия из чугуна в шлак, в конвертер вводится твердый охладитель. Для получения кондиционного по химическому составу ванадиевого шлака и обеспечения глубокой деванадации чугуна твердый охладитель, вводимый в конвертер, должен содержать железа общего не менее 65% и СаО не более 1,5%.

Известен способ производства ванадиевого шлака и легированной ванадием стали [1] (патент РФ № 2416650, кл. C21C5/28, опубл. 20.04.2011, бюл.11)? включающий передел ванадиевого чугуна на первой стадии процесса в кислородном конвертере на ванадиевый шлак и металл - полупродукт, предусматривающий заливку ванадиевого чугуна в конвертер, продувку кислородом и подачу охладителей, передел полученного металл-полупродукта на сталь на второй стадии процесса путем завалки в конвертер охладителей, заливку полученного полупродукта, зажигания и продувки плавки кислородом, порционной присадки шлакообразующих по ходу продувки, выпуск металла в ковш, его науглероживание, раскисление, легирование и доводку по химическому составу и температуре, при этом в качестве охладителей на первой стадии процесса используют гранулированный ванадиевый чугун с фракцией 5-15 мм в количестве 20-200 кг/т чугуна и окалину до 70 кг/т металла, а на второй стадии процесса в качестве охладителя используют гранулированный ванадиевый чугун фракции 5-15 мм в количестве 20-60 кг/т чугуна.

Известен способ конвертерной плавки с использованием металлизованных материалов [2] (Патент РФ № 2145356, кл. С21С 5/28, опубл. 10.11.1998), включающий заливку ванадиевого чугуна, присадку охладителей и шлакообразующих, продувку кислородом, причем в качестве охладителей используют металлолом или окалину и природнолегированные ванадием металлизованные железорудные материалы, при их суммарном расходе 50-365 кг/т чугуна, причем на первой стадии дуплекс процесса в качестве охладителей присаживают 50-240 кг/т чугуна природнолегированных ванадием металлизованных железорудных материалов и до 80 кг/т чугуна окалины, а на второй стадии используют металлолом и природнолегированные ванадием металлизованные железорудные материалы.

Недостатком перечисленных способов является использование в качестве охладителей для деванадации чугуна гранулированного ванадиевого чугуна с содержанием железа металлического 90-95% и металлизованных железорудных материалов с содержанием железа металлического 70-80%. Известно из [3] ( Л.А.Смирнов, Ю.А.Дерябин, С.К.Носов, А.Я. Кузовков, В.И. Ильин «Конвертерный передел ванадиевого чугуна», Екатеринбург, Среднеуральское книжное издательство, 2000, 167 стр.), что на первой стадии дуплекс-процесса, кроме кислорода дутья в окислении углерода и шлакообразующих примесей ванадиевого чугуна, в том числе ванадия, активное участие принимают оксиды железа окалины, содержание которых в окалине составляет 90-95%. При частичной или полной замене окалины на чугун ванадиевый гранулированный или металлизированное железорудной сырье, железо в которых представлено в основном железом металлическим, снижается эффективность извлечения ванадия из чугуна в ванадиевый шлак.

Наиболее близким к заявляемому способу (прототип) является способ извлечения ванадия из ванадиевого чугуна в ванадиевый шлак, применяемый в Акционерном обществе «ЕВРАЗ Нижнетагильский металлургический комбинат» [4] («Технологическая инструкция ТИ 102-СТ-282-2016 «Производство ванадийсодержащей продукции» ОАО «ЕВРАЗ НТМК» Нижний Тагил, 2016 г.), при котором на первой стадии дуплекс-процесса, для обеспечения низкотемпературного режима конвертерной плавки, в конвертер вводится твердый охладитель в виде прокатной окалины в чистом виде или в смеси с неофлюсованными окатышами в соотношении 3:1 (3 части окалины и 1 часть окатышей) в количестве 30-100 кг/т чугуна, при этом охладитель в виде прокатной окалины содержит не менее 70% железа общего и не более 0,75% оксида кальция, а охладитель в виде смеси прокатной окалины и неофлюсованных окатышей содержит не менее 65% железа общего и не более 1,5% оксида кальция.

Недостатком данного способа является необходимость использования для охлаждения металлической ванны в конвертере в больших количествах дефицитной прокатной окалины. Например объем потребления прокатной окалины в АО «ЕВРАЗ НТМК» на первой стадии кислородно-конвертерного дуплекс-процесса достигает 200 тыс. тонн в год. При объеме образования окалины в прокатных цехах комбината порядка 100 тыс. тонн в год потребность в закупе прокатной окалины со стороны составляет около 100 тыс. тонн в год.

Задачей настоящего изобретения является снижение объемов закупки дефицитной прокатной окалины для нужд первой стадии дуплекс-процесса со стороны, получение кондиционного по химическому составу ванадиевого шлака и обеспечение глубокой деванадации чугуна, путем ввода твердого охладителя с содержанием железа общего не менее 65% и СаО не более 1,5%.

Техническим результатом, достигаемым при решении данной задачи, является: снижение объемов дефицитной прокатной окалины, утилизация отходов металлургического производства, глубокое извлечение ванадия из чугуна в товарный ванадиевый шлак и получение товарного ванадиевого шлака с требуемым химическим составом.

Поставленная задача достигается тем, что в известном способе, включающем передел ванадиевого чугуна в товарный ванадиевый шлак и металл - полупродукт на первой стадии кислородно-конвертерного дуплекс-процесса, путем заливки ванадиевого жидкого чугуна в конвертер, продувку его кислородом и ввод в конвертер охладителей, в качестве охладителей используют брикет железосодержащий для деванадации чугуна в количестве 20-100 кг/т чугуна, состоящий из 20-40 % шламов газоочисток доменных печей и/ или конвертеров, 5-30% замасленной окалины вторичных отстойников, 30-60% прокатной окалины и 5-10% связующего – стекла натриевого жидкого, с содержанием железа общего не менее 65% и содержанием СаО не более 1,5%.

Сущность заявленного способа заключается в том, что на первой стадии дуплекс-процесса взамен прокатной окалины и/или смеси прокатной окалины с окатышами вводится брикет для деванадации чугуна в количестве 20-100 кг/т чугуна. При этом брикет для деванадации чугуна изготавливается методом холодного брикетирования железосодержащих отходов - шламов газоочистки доменных печей и/ или конвертеров, замасленной окалины вторичных отстойников и прокатной окалины (таблица 1), а удельный расход брикета, сопоставимый с удельным расходом прокатной окалины в чистом виде или в смеси с неофлюсованными окатышами, обеспечивает необходимую степень охлаждения расплава в конвертере для эффективного извлечения ванадия из чугуна в шлак.

Таблица 1

Шлам газоочистки доменных печей или конвертеров Замасленная окалина вторичных отстойников Окалина прокатная 20-40% 5-30% 30 – 60%

В качестве связующего для изготовления брикета используется жидкое стекло в количестве 5-10% от суммарного количества исходных железосодержащих компонентов шихты брикета. Процентное соотношение железосодержащих отходов в составе шихты брикета, указанное в таблице 1, обеспечивает получение брикета с содержанием оксида кальция от 1,0 до 1,5% и железа общего от 65,0 до 69,0%, что удовлетворяет требованиям, предъявляемым к охладителям для первой стадии дуплекс-процесса, а использование такого брикета на первой стадии дуплекс-процесса обеспечивает получение кондиционного по химическому составу товарного ванадиевого шлака.

На первой стадии дуплекс-процесса наиболее приемлемым охладителем является брикет, заявленный предлагаемым изобретением способом. Однако при его расходе меньше 20 кг/т чугуна не будет достигаться низкотемпературный режим кислородной продувки, что впоследствии приведет к низкому извлечению ванадия из чугуна в шлак. Подача брикета более 100 кг/т чугуна приведет к тому, что конечный металл-полупродукт не будет соответствовать требованиям второй стадии дуплекс-процесс, т.к. запаса физической и химической теплоты металла-полупродукта будет недостаточно для окончательной выплавки стали в конвертере.

Сопоставительный анализ заявляемого технического решения и способа прототипа показывает, что предлагаемый способ отличается тем, что:

1) для обеспечения низкотемпературного режима конвертерной плавки и извлечения ванадия из чугуна в шлак на первой стадии кислородно-конвертерного дуплекс-процесса, в качестве твердого охладителя в конвертер вводится брикет из окалины для деванадации чугуна в количестве 20 – 100 кг/т чугуна;

2) удельный расход брикета, сопоставимый с удельным расходом прокатной окалины в чистом виде или в смеси с неофлюсованными окатышами, обеспечивает необходимую степень охлаждения расплава в конвертере для эффективного извлечения ванадия из чугуна в ванадиевый шлак;

3) замена твердого охладителя в виде прокатной окалины и/или смеси прокатной окалины с неофлюсованными окатышами на первой стадии дуплекс-процесса на твердый охладитель в виде брикета железосодержащего для деванадации чугуна обеспечивает получение кондиционного по химическому составу товарного ванадиевого шлака;

4) получение брикета для деванадации чугуна осуществляется методом холодного брикетирования железосодержащих отходов – 20-40% шламов газоочистки доменных и/или конвертерных, 5-30% замасленной окалины вторичных отстойников и 30-60% прокатной окалины, с использованием в качестве связующего 5-10% стекла натриевого жидкого;

5) процентное соотношение железосодержащих отходов в составе шихты брикета обеспечивает получение брикета с содержанием оксида кальция от 1,0 до 1,5% и железа общего от 65,0 до 69,0%, что удовлетворяет требованиям, предъявляемым к охладителям для первой стадии дуплекс-процесса;

6) получение и использование на первой стадии дуплекс-процесса брикета железосодержащего для деванадации чугуна позволяют снизить экологическую нагрузку на предприятие и на город в целом за счет утилизации в металлургическом производстве доменных и/или конвертерных шламов газоочистки и замасленной окалины вторичных отстойников;

7) наряду со снижением объемов закупа дефицитной прокатной окалины обеспечивает глубокое извлечение ванадия из чугуна в товарный ванадиевый шлак с требуемым химическим составом.

Таким образом, данное техническое решение соответствует критерию «новизна».

Анализ патентов и научно-технической информации не выявил использования новых существенных признаков, используемых в предлагаемом решении по их функциональному назначению. Следовательно, предлагаемое изобретение соответствует критерию «изобретательский уровень».

Опытные плавки проводились в АО «ЕВРАЗ Нижнетагильский металлургический комбинат» в конвертерном цехе №1. Жидкий ванадиевый чугун в количестве 160 - 170 т из заливочного ковша сливали в конвертер. В конвертер опускали водоохлаждаемую фурму и продували расплав техническим кислородом сверху. Для поддержания низкотемпературного режима кислородной продувки по окончании плавки при температуре расплава 1360-1380°С в конвертер вводили предлагаемый изобретением брикет железосодержащий для деванадации чугуна.

В качестве железосодержащей шихты для изготовления брикета железосодержащего для деванадации чугуна использовались: прокатная окалина (60%), замасленная окалина вторичных отстойников (10%) и конвертерные шламы ЦУШ (30%). В качестве связующего для изготовления брикета использовалось жидкое стекло по ГОСТ 13078-81 в количестве 8% от суммарного количества исходных железосодержащих компонентов шихты брикета. Содержание СаО в брикете железосодержащем для деванадации чугуна составило 1,5%, содержание железа общего – 67,2%, что отвечает требованиям, установленным для первой стадии дуплекс-процесса.

Расход твердого охладителя в виде брикета железосодержащего для деванадации чугуна на опытных плавках определяли исходя из химического состава и температуры чугуна с учетом целевых параметров углеродистого металла-полупродукта. После окончания кислородной продувки углеродистый металл-полупродукт через сталевыпускное отверстие сливали из конвертера в ковш, а ванадиевый шлак оставляли в конвертере для накопления шлака от трех или четырех плавок, или сливали через горловину конвертера в шлаковую чашу. Слитый углеродистый металл-полупродукт передавали для выплавки стали в другой конвертер, а слитый в шлаковую чашу ванадиевый шлак разделывали на шлаковом дворе и отгружали переработчикам ванадиевого шлака.

Результаты испытаний заявляемого изобретением способа и известного способа представлены в таблицах 2 и 3.

Сопоставительный анализ приведенных результатов испытаний показывает, что при одинаковом усредненном химическом составе чугуна и одинаковой усредненной температуре чугуна на опытных плавках по заявляемому изобретением способу (таблица 2) и сравнительных плавках по известному способу прототипу (таблица 3), расход брикета железосодержащего для деванадации чугуна на опытных плавках (55,1 кг/т) чугуна соответствует суммарному расходу окалины и окатышей (55,1 кг/т чугуна). При этом усредненный коэффициент ошлакования ванадия на опытных плавках (91,3%) соответствует усредненному коэффициенту ошлакования ванадия на сравнительных плавках (91,2%), что подтверждает эффективность извлечения ванадия из чугуна в товарный ванадиевый шлак на первой стадии дуплекс-процесса при использовании предлагаемого комплексного брикета железосодержащего для деванадации чугуна. Среднее содержание пентаоксида ванадия в ванадиевом шлаке опытных плавок (24,6%) соответствует среднему содержанию пентаоксида ванадия в ванадиевом шлаке сравнительных плавок (24,8). Среднее содержание СаО в ванадиевом шлаке опытных плавок (2,8%) несколько выше среднего содержания СаО в ванадиевом шлаке сравнительных плавок (1,4%), что является следствием увеличенного содержания СаО в брикете железосодержащем для деванадации чугуна относительно содержания СаО в окалине или смеси окалины с неофлюсованными окатышами. При этом содержание СаО в ванадиевом шлаке опытных плавок соответствует требованиям, предъявляемым к содержанию этого компонента в товарном ванадиевом шлаке (не более 3%).

Таким образом, расход брикета железосодержащего для деванадации чугуна в количестве 20-100 кг/т, сопоставимый с расходом окалины и/или смеси окалины с неофлюсованными окатышами, обеспечивает низкотемпературный режим ведения плавки на первой стадии дуплекс-процесса, глубокое извлечение ванадия из чугуна в шлак и получение товарного ванадиевого шлака с требуемым химическим составом.

Использование заявленного способа извлечения ванадия из природнолегированного ванадиевого чугуна с использованием в качестве охладителя брикета железосодержащего для деванадации чугуна взамен прокатной окалины и/или смеси прокатной окалины с окатышами на первой стадии кислородно-конвертерного дуплекс-процесса обеспечивает:

1) снижение объемов использования дефицитной прокатной окалины;

2) утилизацию отходов металлургического производства – доменных и/или конвертерных шламов газоочистки и замасленной окалины вторичных отстойников;

3) глубокое извлечение ванадия из чугуна в товарный ванадиевый шлак;

4) получение товарного ванадиевого шлака с требуемым химическим составом.

Похожие патенты RU2641436C1

название год авторы номер документа
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА НИКОМ-ПРОЦЕССОМ 1999
  • Шевцов А.Л.
  • Кузовков А.Я.
  • Крупин М.А.
  • Ильин В.И.
  • Чернушевич А.В.
  • Смирнов Л.А.
  • Ровнушкин В.А.
  • Дерябин Ю.А.
  • Кокареко О.Н.
  • Батуев С.Б.
RU2148088C1
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЕВОГО ШЛАКА И ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 2008
  • Гильманов Марат Риматович
  • Киричков Анатолий Александрович
  • Мухатдинов Насибулла Хадиатович
  • Мухранов Николай Валентинович
  • Петренко Юрий Петрович
  • Фетисов Александр Архипович
  • Хамлов Юрий Николаевич
RU2416650C2
СПОСОБ КОНВЕРТЕРНОЙ ПЛАВКИ С ИСПОЛЬЗОВАНИЕМ МЕТАЛЛИЗОВАННЫХ МАТЕРИАЛОВ 1998
  • Буявых С.П.
  • Ильин В.И.
  • Исупов Ю.Д.
  • Кривых В.А.
  • Кузнецов Е.В.
  • Кузовков А.Я.
  • Леушин В.Н.
  • Меламуд С.Г.
  • Огуречников А.П.
  • Ровнушкин В.А.
  • Смирнов Л.А.
  • Чернушевич А.В.
RU2145356C1
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ПРИ КОНВЕРТЕРНОМ ПЕРЕДЕЛЕ ПРИРОДНО-ЛЕГИРОВАННОГО ЧУГУНА 2010
  • Белокуров Андрей Дмитриевич
  • Данилин Юрий Анатольевич
  • Киричков Анатолий Александрович
  • Кушнарев Алексей Владиславович
  • Левчук Владимир Владимирович
  • Паньков Александр Александрович
  • Петренко Юрий Петрович
  • Фетисов Александр Архипович
  • Фомичев Максим Станиславович
RU2442827C2
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО ЧУГУНА 2016
  • Белокуров Андрей Дмитриевич
  • Долматов Олег Владимирович
  • Копейкин Андрей Федорович
  • Кушнарев Алексей Владиславович
  • Миронов Константин Владимирович
  • Мухранов Николай Валентинович
  • Николаев Федор Павлович
  • Паньков Александр Александрович
  • Смирнов Павел Геннадьевич
  • Сосна Григорий Васильевич
  • Фомичев Максим Станиславович
  • Зажигаев Павел Анатольевич
  • Левчук Владимир Владимирович
RU2656125C2
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА 2000
  • Носов С.К.
  • Смирнов Л.А.
  • Кузовков А.Я.
  • Дерябин Ю.А.
  • Ильин В.И.
  • Ровнушкин В.А.
  • Зажигаев П.А.
  • Кокареко О.Н.
  • Данилин Ю.А.
RU2201968C2
КОМПЛЕКСНЫЙ ФЛЮС ДЛЯ ДЕВАНАДАЦИИ ЧУГУНА 1998
  • Кузовков А.Я.
  • Одиноков С.Ф.
  • Чернушевич А.В.
  • Ильин В.И.
  • Кокареко О.Н.
  • Дерябин Ю.А.
  • Батуев С.Б.
  • Зорихин В.В.
RU2148654C1
СПОСОБ ПЕРЕРАБОТКИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ НИЗКОКРЕМНИСТОГО ВАНАДИЙСОДЕРЖАЩЕГО МЕТАЛЛИЧЕСКОГО РАСПЛАВА 2014
  • Смирнов Леонид Андреевич
  • Ровнушкин Виктор Аркадьевич
  • Смирнов Андрей Леонидович
RU2566230C2
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА 1998
  • Комратов Ю.С.
  • Смирнов Л.А.
  • Кузовков А.Я.
  • Демидов К.Н.
  • Ильин В.И.
  • Дерябин Ю.А.
  • Чернушевич А.В.
  • Кокареко О.Н.
  • Кузнецов С.И.
RU2140458C1
Способ передела ванадиевого чугуна в конвертере 1983
  • Смирнов Леонид Андреевич
  • Дерябин Юрий Андреевич
  • Арнаутов Василий Тихонович
  • Ромазан Иван Харитонович
  • Третьяков Михаил Андреевич
  • Червяков Борис Дмитриевич
  • Киселев Сергей Петрович
  • Винокуров Владимир Георгиевич
  • Довголюк Людмила Васильевна
SU1127906A1

Иллюстрации к изобретению RU 2 641 436 C1

Реферат патента 2018 года СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ПРИРОДНОЛЕГИРОВАННОГО ВАНАДИЕВОГО ЧУГУНА

Изобретение относится к черной металлургии, конкретнее к извлечению ванадия из природнолегированного ванадиевого чугуна. Сущность изобретения заключается в том, что на первой стадии дуплекс-процесса, включающей заливку ванадиевого жидкого чугуна в конвертер, продувку его кислородом и ввод в конвертер охладителей в виде брикета железосодержащего для деванадации чугуна в количестве 20-100 кг/т чугуна. Брикет для деванадации чугуна изготавливается методом холодного брикетирования железосодержащих отходов - шламов газоочистки доменных печей или конвертеров 20-40%, замасленной окалины вторичных отстойников 5-30%, прокатной окалины 30-60% и содержит натриевое жидкое стекло в качестве связующего, причем содержание железа общего в брикете должно составлять 65%, а содержание СаО не более 1,5%. Изобретение позволяет утилизировать отходы металлургического производства, получить кондиционный по химическому составу ванадиевый шлак и обеспечить глубокое извлечение ванадия из чугуна в товарный ванадиевый шлак с требуемым химическим составом. 3 табл.

Формула изобретения RU 2 641 436 C1

Способ извлечения ванадия из природнолегированного ванадиевого чугуна, включающий передел ванадиевого чугуна в товарный ванадиевый шлак и металл - полупродукт на первой стадии кислородно-конвертерного дуплекс-процесса, путем заливки ванадиевого жидкого чугуна в конвертер, продувку его кислородом и ввод в конвертер охладителя, отличающийся тем, что в качестве охладителя используют железосодержащий брикет для деванадации чугуна, состоящий из 20-40% шламов газоочистки доменных печей или конвертеров, 5-30% замасленной окалины вторичных отстойников, 30-60% прокатной окалины и 5-10% связующего, с расходом в количестве 20-100 кг/т чугуна.

Документы, цитированные в отчете о поиске Патент 2018 года RU2641436C1

СПОСОБ КОНВЕРТЕРНОЙ ПЛАВКИ С ИСПОЛЬЗОВАНИЕМ МЕТАЛЛИЗОВАННЫХ МАТЕРИАЛОВ 1998
  • Буявых С.П.
  • Ильин В.И.
  • Исупов Ю.Д.
  • Кривых В.А.
  • Кузнецов Е.В.
  • Кузовков А.Я.
  • Леушин В.Н.
  • Меламуд С.Г.
  • Огуречников А.П.
  • Ровнушкин В.А.
  • Смирнов Л.А.
  • Чернушевич А.В.
RU2145356C1
Способ конвертерного передела ванадиевого чугуна дуплекс-процессом 1986
  • Смирнов Леонид Андреевич
  • Василенко Геннадий Николаевич
  • Фрейденберг Анатолий Самуилович
  • Кокареко Олег Николаевич
  • Щекалев Юрий Степанович
  • Фугман Гарри Иванович
  • Корогодский Виталий Григорьевич
  • Третьяков Михаил Андреевич
  • Червяков Борис Дмитриевич
  • Кричевцов Евгений Алексеевич
SU1425213A1
ТЕРМОТОПЛИВНЫЙ РЕГУЛЯТОР 1991
  • Корнюшин Александр Николаевич
RU2027058C1
WO 8701136 A1, 26.02.1987.

RU 2 641 436 C1

Авторы

Белокуров Андрей Дмитриевич

Долматов Олег Владимирович

Зажигаев Павел Анатольевич

Криницын Михаил Васильевич

Кушнарев Алексей Владиславович

Левчук Владимир Владимирович

Паньков Александр Александрович

Сохраннов Олег Викторович

Шеховцов Евгений Валентинович

Даты

2018-01-17Публикация

2016-10-06Подача