Изобретение относится к выращиванию монокристаллов типа граната в молибденовом тигле из расплава, в частности к получению материалов для лазерной техники, а именно к монокристаллическим материалам, предназначенным для модуляции добротности лазерного излучения (пассивным лазерным затворам).
При выращивании кристаллов алюмоиттриевого граната (АИГ) с повышенной концентрацией ванадия (≥3⋅1020 см-3) методом Стокбаргера-Бриджмена в молибденовых контейнерах происходит взаимодействие расплава с материалом контейнера, т.е. вхождение молибдена в расплав. При увеличении концентрации молибдена в расплаве выращиваемого кристалла происходит выделение молибдена в виде фазовых включений, существенно ухудшающих оптическое качество кристалла: увеличение рассеяния и снижение лучевой стойкости.
Наиболее близким аналогом к заявляемому техническому решению является патент РФ №2501892, опубл. 20.12.2013 по индексам МПК С30В 11/04, С30В 29/28. В заявленном техническом решении кристаллы алюмоиттриевого граната, легированные ванадием (AИГ:V), выращивают методом вертикальной направленной кристаллизации в молибденовом тигле в восстановительной атмосфере аргона с водородом (Ar + H2).
Содержание (Ar + H2) предпочтительно в соотношении 10:2 соответственно.
Содержание ванадия в количестве от 1 до 5,0 ат. % обеспечивается составом шихты. Состав навески определялся из общей формулы Y3Al5(1-0,01x)V0,05xO12, где x - ат. % ванадия в октаэдрических и тетраэдрических позициях решетки кристалла.
Недостатком данного технического решения является вхождение молибдена (материал тигля) в расплав и выделение его в виде фазовых включений при повышенной концентрации ванадия.
Изготовленные пассивные лазерные затворы (ПЛЗ) на основе выращенных кристаллов по прототипу с фазовыми включениями молибдена не обеспечивают лазерную модуляцию добротности, т.к. фазовые включения молибдена создают центры рассеяния и снижают лучевую стойкость кристаллов, и изделия, изготовленные из такого материала, не удовлетворяют требованиям лазерного качества материала.
Задачей, на решение которой направлено заявляемое изобретение, является изготовление ПЛЗ на основе кристаллов АИГ:V с концентрацией ванадия ≥3⋅1020 см-3, обеспечивающих модуляцию добротности в диапазоне длин волн 1.02-1.45 мкм.
Технический результат - уменьшение концентрации фазовых включений молибдена (размером ≤10 мкм) в выращенном кристалле АИГ:V с концентрацией ванадия ≥3⋅1020 см-3 до значений, не влияющих на оптическое качество материала ПЛЗ.
Технический результат достигается за счет введения в состав исходной шихты металлов с потенциалом ионизации, меньшим, чем у молибдена (7,1 эВ), например, хрома. Металл добавляют в виде металлического порошка.
Данная задача решается путем совершенствования способа выращивания алюмоиттриевого граната с повышенной концентрацией ванадия (>5⋅1020 см-3), заключающегося в выращивании кристалла методом вертикальной направленной кристаллизации в молибденовом тигле в восстановительной атмосфере аргона с водородом (Ar+H2) из исходной шихты состава V2O5, Cr, Y3Al5O12, обеспечивающей содержание ванадия в выращенном кристалле от 1 до 7 ат. %. Состав навески определяют из общей формулы Y3(Al(1-0,01x)V0,03x/5Cr0,02x/5)5O12, где x - концентрация ванадия в октаэдрических и тетраэдрических позициях решетки кристалла и составляет от 1 до 7 ат. %.
На Фиг. 1 представлена фотография, полученная с помощью микроскопа Leica DMRX, выращенного кристалла АИГ:V с концентрацией ванадия 5⋅1020 см-3 по методу, предложенному в прототипе. На снимке отчетливо видны фазовые включения молибдена в кристалле АИГ:V в виде дендритов в периферийной зоне були кристалла.
На Фиг. 2 представлены спектры люминесценции кристаллов АИГ:V(1) и АИГ:V с хромом (2), выращенного по заявляемому способу.
В выращенном кристалле АИГ:V ионы Cr+3 занимают октаэдрические позиции. Наличие хрома в выращенном кристалле AИГ:V не влияет на рабочую область спектра ПЛЗ (1000-1450 нм), изготовленного на его основе, т.к. ионы Cr+3 в AИГ:V имеют максимумы поглощения на длинах волн 430 нм и 615 нм. Наличие хрома в выращенном кристалле AИГ:V подтверждает спектр люминесценции с максимумом на 680-710 нм (см. фиг. 2), полученный спектрометрическим комплексом РМА 12 (компании Hamamatsu).
Конкретный пример реализации способа
Для выращивания кристаллов АИГ:V использовались реактивы следующих марок: оксид иттрия марки ИтО-В (ОСТ 48-208-81), оксид алюминия для спектрального анализа - ТУ 6-09-973-76, оксид ванадия (111), химически чистый, марка ЧДА ТУ 6-09-4272-78, металлический порошок хрома, марка ПХА-1М. Исходный состав компонентов шихты, состоящий из оксидов иттрия, алюминия, ванадия и металлического хрома, смешивался в соотношении, соответствующем заданной концентрации ванадия (см. таблицу).
Компоненты тщательно перемешивают и засыпают в молибденовую трубку, в которую предварительно устанавливают затравку. Трубка с шихтой помещается в рабочую зону нагревателя так, чтобы изотерма кристаллизации проходила через затравку. Затем установка закрывается, вакуумируется до давления 5⋅10-5 торр и заполняется газом: аргоном марки «ВЧ» - 10 частей и водородом марки «ОСЧ» - 2 части до общего давления 1,5 кг/см2. Затем установка снова вакуумируется и заполняется аргоном и водородом в тех же соотношениях. Две стадии вакуумирования используются для более надежной очистки камеры от атмосферы.
Режим выращивания АИГ:V:
1. Подъем температуры до 2000°C - 2 часа.
2. Первое плавление шихты - 2 часа.
3. Первая кристаллизация расплава путем опускания тигля из горячей зоны нагревателя в холодную со скоростью 10 мм/час.
4. Второе плавление закристаллизовавшегося расплава путем перемещения тигля со скоростью 10 мм/час в горячую зону нагревателя.
5. Выдержка расплава в верхнем положении 2 часа.
6. Выращивание кристалла АИГ:V путем опускания тигля (трубки) из горячей зоны нагревателя в холодную зону со скоростью 3-4 мм/час.
7. Охлаждение путем снижения температуры со скоростью ~80 градусов/час до комнатной температуры - 24 часа.
Тигель (молибденовая трубка) удаляется механическим или химическим способом.
Предложенным способом выращены прозрачные кристаллы АИГ:V размером до ∅ 28 мм и длиной 65 мм с концентрацией ванадия 1÷7 ат. % без внутренних дефектов в виде включений посторонней фазы и пузырей.
Из выращенных кристаллов сделаны пассивные лазерные затворы ∅ 6 мм, которые в настоящее время поставляются различным заинтересованным организациям по согласованным техническим условиям. По разработанной технологии возможно изготовление затворов диаметром до 25 мм.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВЫРАЩИВАНИЯ АЛЮМОИТТРИЕВОГО ГРАНАТА, ЛЕГИРОВАННОГО ВАНАДИЕМ | 2012 |
|
RU2501892C9 |
СЕРИЙНЫЙ СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ГАЛЛИЙ-СКАНДИЙ-ГАДОЛИНИЕВЫХ ГРАНАТОВ ДЛЯ ПАССИВНЫХ ЛАЗЕРНЫХ ЗАТВОРОВ | 2006 |
|
RU2324018C2 |
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ГАЛЛИЙ-СКАНДИЙ-ГАДОЛИНИЕВЫХ ГРАНАТОВ ДЛЯ ПАССИВНЫХ ЛАЗЕРНЫХ ЗАТВОРОВ | 2006 |
|
RU2321689C2 |
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ГАДОЛИНИЙ-СКАНДИЙ-АЛЮМИНИЕВЫХ ГРАНАТОВ ДЛЯ ПАССИВНЫХ ЛАЗЕРНЫХ ЗАТВОРОВ | 2014 |
|
RU2550205C1 |
СПОСОБ ВЫРАЩИВАНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ МОНОКРИСТАЛЛОВ МЕТОДОМ СИНЕЛЬНИКОВА-ДЗИОВА | 2016 |
|
RU2626637C1 |
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ТРУБ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2013 |
|
RU2531823C1 |
Поликристаллический синтетический ювелирный материал (варианты) и способ его получения | 2015 |
|
RU2613520C1 |
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПАССИВНОГО ЗАТВОРА ЛАЗЕРА, РАБОТАЮЩЕГО В БЕЗОПАСНОЙ ДЛЯ ЗРЕНИЯ ОБЛАСТИ СПЕКТРА, И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2592303C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКЕРАМИКИ С НАНОРАЗМЕРНЫМИ КРИСТАЛЛАМИ ТВЕРДЫХ РАСТВОРОВ ТИТАНАТОВ-ЦИРКОНАТОВ ЭРБИЯ И/ИЛИ ИТТЕРБИЯ | 2015 |
|
RU2583470C1 |
СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ТУГОПЛАВКИХ СОЕДИНЕНИЙ | 2010 |
|
RU2439214C1 |
Изобретение относится к технологии получения монокристаллических материалов для лазерной техники, предназначенных для модуляции добротности лазерного излучения (пассивным лазерным затворам - ПЛЗ). Способ выращивания алюмоиттриевого граната, легированного ванадием (АИГ:V), заключается в выращивании кристалла методом вертикальной направленной кристаллизации в молибденовом тигле в восстановительной атмосфере аргона с водородом, в котором исходная шихта дополнительно содержит металлический хром, при этом состав навески определяют из общей формулы Y3(Al(1-0,01x)V0,03x/5Cr0,02x/5)5O12, где x - концентрация ванадия в октаэдрических и тетраэдрических позициях решетки кристалла и составляет от 1 до 7 ат. %. Технический результат изобретения состоит в уменьшении концентрации фазовых включений молибдена (материала тигля) размером менее или равным 10 мкм в выращенном кристалле АИГ:V c концентрацией ванадия более или равной 3⋅1020 см-3 до значений, не влияющих на оптическое качество ПЛЗ. ПЛЗ на основе кристаллов АИГ:V с концентрацией ванадия ≥3⋅1020 см-3 обеспечивают модуляцию добротности в диапазоне длин волн 1,02-1,45 мкм. 2 ил., 1 табл.
Способ выращивания алюмоиттриевого граната, легированного ванадием, заключающийся в выращивании кристалла методом вертикальной направленной кристаллизации в молибденовом тигле в восстановительной атмосфере аргона с водородом, отличающийся тем, что исходная шихта дополнительно содержит металлический хром, при этом состав навески определяют из общей формулы
Y3(Al(1-0,01x)V0,03x/5Cr0,02x/5)5O12,
где x - концентрация ванадия в октаэдрических и тетраэдрических позициях решетки кристалла и составляет от 1 до 7 ат. %.
СПОСОБ ВЫРАЩИВАНИЯ АЛЮМОИТТРИЕВОГО ГРАНАТА, ЛЕГИРОВАННОГО ВАНАДИЕМ | 2012 |
|
RU2501892C9 |
JP 08037328 А, 06.02.1996. |
Авторы
Даты
2018-01-22—Публикация
2017-04-20—Подача