Изобретение относится к области теплотехники, в частности к производству легковесных огнеупорных теплоизоляционных изделий, и может быть использовано для обеспечения тепловой защиты передового энергетического оборудования.
Известна композиция для получения теплоизоляционного материала (патент RU №2584538 опубл. 20.05.2016, МПК C08L61/10), содержащая фенольное связующее на основе фенолформальдегидных смол, минеральный наполнитель - золошлаковый отход, катализатор - вспенивающе-отверждающий агент кислотного типа ВАГ-3.
Недостатком данного технического решения является низкая механическая прочность и низкая температура эксплуатации изделий, полученных на основе настоящей композиции.
Наиболее близкой по технической сущности к предлагаемому изобретению является сырьевая смесь для изготовления теплоизоляционных изделий (авторское свидетельство SU №753824, опубл. 07.08.1980, МПК С04В 29/02), содержащая фосфатное связующее, глиноземсодержащий компонент и легкий заполнитель в виде фосфатных микросфер.
Недостатком настоящего технического решения является низкая механическая прочность изделий, полученных на основе данной смеси.
Техническая задача предлагаемого изобретения состоит в разработке композиции, обеспечивающей повышение прочности и снижение теплопроводности теплоизоляционных легковесных изделий, изготовленных на ее основе.
Технический результат заключается в повышении механических свойств огнеупорных легковесных теплоизоляционных изделий и снижении тепловых потерь с теплоизолируемой поверхности.
Это достигается тем, что известная композиция для получения теплоизоляционных изделий, включающая связующее и легкий заполнитель, дополнительно содержит карбамидофурановую смолу марок ФК и катализатор отверждения марок ОК в количестве 10% от массы смолы, при этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов маc, %: алюмохромфосфатное связующее 25-34, полые алюмосиликатные микросферы 55-69,5, катализатор отверждения марок ОК 0,5-1, карбамидофурановая смола марок ФК 5-10.
Алюмохромфосфатное связующее представляет собой водный раствор ортофосфорной кислоты и оксидов хрома и алюминия согласно ТУ 6-18-166-83. В качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм. Также возможно использование других видов полых микросфер из следующих групп: полые керамические микросферы, полые зольные микросферы диаметром от 150 до 280 мкм.
Карбамидофурановая смола является продуктом поликонденсации карбамида, формальдегида и фурилового спирта в водной среде. Опытным путем было установлено, что при изготовлении композиции для получения теплоизоляционных изделий может быть использована любая карбамидофурановая смола марок ФК, которые отличаются между собой лишь содержанием азота и свободного формальдегида в своем составе, что никак не влияет на конечные характеристики композиции. В качестве катализатора отверждения данной смолы выбраны катализаторы марок ОК, отличающиеся только скоростью реакции отверждения, что также не влияет на свойства получаемого изделия.
Композиция для получения теплоизоляционных изделий работает следующим образом.
Алюмохромфосфатное связующее в составе композиции создает матрицу теплоизоляционного изделия, удерживающую в своей структуре полые алюмосиликатные микросферы (или полые керамические микросферы или полые зольные микросферы). В отличие от жаростойкого цемента или каолиновой глины, алюмохромфосфатное связующее имеет высокое объемное заполнение, а также низкую плотность. Это обеспечивает повышение теплоизолирующих и механических свойств теплоизоляционного изделия.
Поскольку алюмохромфосфатное связующее также имеет в своем составе ортофосфорную кислоту, расход катализатора отверждения используется 10% от массы смолы. Таким образом, при отверждении композиции часть ортофосфорной кислоты, входящей в состав алюмохромфосфатного связующего, идет на каталитическую реакцию отверждения смолы, что приводит к постепенной полимеризации композиции. Карбамидофурановая смола совместно с катализатором отверждения придает теплоизоляционному изделию, полученному на основе предлагаемой композиции, повышенную стойкость к тепловым ударам и низкую скорость термодеструкции.
Опытным путем было доказано, что при использовании легкого заполнителя в виде полых алюмосиликатных микросфер (или полых керамических микросфер или полых зольных микросфер) размером от 150 до 280 мкм, изделие, полученное на основе заявленной композиции, не разрушается и выдерживает термические нагрузки до 700°С. В случае использования микросферы размером менее 150 мкм, в изготавливаемом материале наблюдается более плотная упаковка микросфер, что при повышенных температурах термического отверждения может приводить к возникновению точек напряжения в структуре материала, вследствие чего возможно локальное разрушение материала.
Данную композицию готовят следующим образом. Замешивают алюмосиликатные микросферы в количестве 60% от их общей массы, алюмохромфосфатное связующее и катализатор отверждения. Затем отдельно замешивают оставшиеся 40% алюмосиликатных микросфер и карбамидофурановую смолу. Далее проводят гомогенизацию двух смесей. Затем проводят виброусадку полученной формовочной смеси, после чего осуществляют прессование смеси с вибрацией в течение 5-7 секунд при давлении прессования 15 атм, что обеспечивает лучшую плотность упаковки микросфер в изделии. После этого заготовку помещают в сушильный шкаф для каталитической полимеризации карбамидофурановой смолы на 1 час при температуре 60°С. Далее заготовку помещают в камерную печь, изолированную от доступа воздуха, для проведения отверждения в бескислородной среде со ступенчатым нагревом: 200°С в течение 1 часа, далее 700°С в течение 5 часов. По окончании процесса термоотверждения печь выключают и оставляют в ней изделие для плавного охлаждения в течение 10 часов.
В таблице 1 «Использование различных марок карбамидофурановой смолы с различными марками катализаторов отверждения при осуществлении предлагаемой композиции» приведены 12 примеров на основе экспериментально полученных данных, подтверждающих возможность осуществления предлагаемого изобретения с достижением указанного технического результата. В таблице 2 «Состав изделий, полученных на основе предложенной композиции» приведены составы изделий для указанных в таблице 1 примеров, полученных на основе предложенной композиции с разными марками карбамидофурановых смол и катализаторов отверждения. В таблице 3 «Теплоизоляционные характеристики полученного теплоизоляционного изделия на основе предлагаемой композиции» представлены определенные экспериментально коэффициент теплопроводности, прочность и плотность изделий для указанных в таблицах 1 и 2 примеров.
Изделия, полученные на основе предложенной композиции, обладают теплопроводностью не более 0,09 Вт/м*К, прочностью на сжатие - не менее 0,5 МПа и плотностью не менее 0,15 г/см3. Использование композиции позволяет повысить механические свойства огнеупорных легковесных теплоизоляционных изделий и снизить тепловые потери с теплоизолируемой поверхности энергетического оборудования.
название | год | авторы | номер документа |
---|---|---|---|
Композиция для получения теплоизоляционных скорлуп | 2019 |
|
RU2718788C1 |
Способ получения конструкционно-теплоизоляционного материала | 2016 |
|
RU2636718C1 |
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ ЛЕГКОВЕСНЫХ ТЕПЛОИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ | 2005 |
|
RU2284978C2 |
Сырьевая смесь для жаростойкого теплоизоляционного торкрет-бетона | 2018 |
|
RU2674484C1 |
Способ получения высокопрочных, термо- и огнестойких сферопластиков | 2021 |
|
RU2768641C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНЫХ ТЕПЛОИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ ДЛЯ ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ | 2012 |
|
RU2487102C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ПОРИСТОГО, ОГНЕУПОРНОГО, ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА | 2008 |
|
RU2387623C2 |
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ | 2007 |
|
RU2365561C1 |
ЛЕГКИЙ ТАМПОНАЖНЫЙ ЦЕМЕНТ (ВАРИАНТЫ) | 2003 |
|
RU2256774C2 |
СОСТАВ ПОКРЫТИЯ И СПОСОБ ЕГО НАНЕСЕНИЯ | 2007 |
|
RU2357990C1 |
Изобретение относится к области теплотехники, в частности к производству легковесных огнеупорных теплоизоляционных изделий. Композиция включает связующее и легкий заполнитель и дополнительно содержит карбамидофурановую смолу марки ФК и катализатор отверждения марки ОК в количестве 10% от массы смолы. При этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов, маc.%: алюмохромфосфатное связующее 25-34, полые алюмосиликатные микросферы 55-69,5, катализатор отверждения марки ОК 0,5-1, карбамидофурановая смола марки ФК 5-10. Техническим результатом является повышение механических свойств огнеупорных легковесных теплоизоляционных изделий и снижение тепловых потерь с теплоизолируемой поверхности. 3 табл., 12 пр.
Композиция для получения теплоизоляционных изделий, включающая связующее и легкий заполнитель, отличающаяся тем, что дополнительно содержит карбамидофурановую смолу марки ФК и катализатор отверждения марки ОК в количестве 10% от массы смолы, при этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов, мас.%:
Сырьевая смесь для изготовления теплоизоляционных изделий | 1978 |
|
SU753824A1 |
СЫРЬЕВАЯ СМЕСЬ | 0 |
|
SU399476A1 |
WO 2013032368 A2, 07.03.2013 | |||
Сырьевая смесь для изготовления теплоизоляционных изделий | 1981 |
|
SU1143727A1 |
Композиция для получения пенопласта | 1976 |
|
SU659584A1 |
WO 1994023865 A1, 27.10.1994. |
Авторы
Даты
2018-01-23—Публикация
2017-06-27—Подача