МОНОКРИСТАЛЛ СО СТРУКТУРОЙ ГРАНАТА ДЛЯ СЦИНТИЛЛЯЦИОННЫХ ДАТЧИКОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2018 года по МПК C30B29/28 C30B15/04 C30B33/02 C09K11/55 C09K11/78 C09K11/80 G01T1/202 

Описание патента на изобретение RU2646407C1

Изобретение относится к сцинтилляционным монокристаллам со структурой граната, а именно к неорганическим монокристаллам, активированным ионами редкоземельного элемента церия Ce, в которых под действием ионизирующих излучений возникают световые вспышки сцинтилляций, и предназначенным для датчиков ионизирующего изучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе. Изобретение относится также к технологии получения сцинтилляционных монокристаллов со структурой граната, солегированных ионами второй группы Mg Ca, Sr, Ba и ионами титана Ti для модификации сцинтилляционных свойств монокристалла.

Люминофоры применяют для преобразования различных видов энергии в световую. Сцинтилляторы - это люминофоры, в которых кратковременные световые вспышки - сцинтилляции (вспышки люминесценции), возникают под действием ионизирующих излучений. Атомы или молекулы сцинтиллятора за счет энергии заряженных частиц переходят в возбужденное состояние, а последующий переход из возбужденного в нормальное состояние сопровождается испусканием света - сцинтилляции. Механизм сцинтилляции, ее спектр излучения и длительность высвечивания зависят от природы материала.

Излучаемое количество фотонов пропорционально поглощенной энергии, что позволяет получать энергетические спектры излучения. В сцинтилляционном детекторе свет, излученный при сцинтилляции, собирается на фотоприемнике, преобразуется в электрический сигнал, который усиливается и записывается той или иной регистрирующей системой. Спектр высвечивания сцинтилляционного материала должен быть оптимально согласован со спектральной чувствительностью используемого фотоприемника. Несогласованный со спектральной чувствительностью приемника спектр высвечивания сцинтилляционного материала ухудшает энергетическое разрешение сцинтилляционного детектора

Свечение сцинтиллятора может быть обусловлено как свойствами основного материала, так и наличием примеси - активатора. Сцинтилляторы, которые светятся без активатора, называются самоактивированными. Для увеличения светового выхода, т.е. количества фотонов, излучаемых сцинтиллятором при поглощении определенного количества энергии, в кристалл вводят так называемый активатор. Активатор образует в основном веществе (основании) центры свечения.

Кристаллические сцинтилляторы характеризуют следующие свойства: длина волны (λмакс.), которая соответствует максимуму спектра люминесценции; диапазон прозрачности сцинтиллятора в области длины волны (λмакс.); постоянная времени высвечивания (τ); плотность; эффективный атомный номер (Zэфф.); рабочая температура; показатель преломления; световой выход.

Сцинтилляционный детектор - это устройство для регистрации ионизирующих излучений и элементарных частиц (протонов, нейтронов, электронов, γ-квантов и т.д.), основными элементами которого являются материал, люминесцирующий под действием заряженных частиц (сцинтиллятор) и фотоприемник. Детектирование нейтральных частиц (нейтронов, γ-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и γ-квантов с атомами сцинтиллятора.

Для спектрометрии γ-квантов и электронов высокой энергии используют материалы, обладающие высокой плотностью и высоким эффективным атомным номером. Эффективность регистрации гамма-квантов определяется плотностью вещества и эффективным зарядом соединения Zэфф (см. LECOQ P. et al, Inorganic Scintillators for Detector Systems, 2017, p.40), а нейтронов - сечением их поглощения. Выход сцинтилляций определяет энергетическое разрешение при регистрации гамма-квантов и нейтронов. В совокупности эффективность регистрации и энергетическое разрешение определяют возможность применения и область использования сцинтилляционного материала для регистрации ионизирующего излучения.

Известны самоактивированные сцинтилляционные монокристаллы Bi4Ge3O12, CdWO4, PbWO4, которые обладают высокой эффективностью регистрации ионизирующего излучения, однако кристаллы Bi4Ge3O12, CdWO4 обладают медленно затухающими сцинтилляциями, а кристаллы PbWO4 обладают низким выходом сцинтилляций (US 7279120 B2, 09.10.2007, RU 2031987 C1, 27.03.1995, а также RU 2132417 C1, 27.06.1999). Для увеличения светового выхода самоактивированный сцинтилляционный кристалл охлаждают, что хорошо работает в кристаллах такого типа, структурные единицы которых (окси-анионные комплексы) обладают значительно температурно-потушенной люминесценцией. В кристаллах PbWO4 охлаждение до температуры минус 25°C позволяет утроить его световыход, при одновременном сохранении короткого времени высвечивания, однако это не обеспечивает приемлемое энергетическое разрешение при регистрации гамма-квантов в энергетическом диапазоне менее 1 МэВ, что делает их малопригодными для применения в устройствах медицинской диагностики.

Наибольшее разнообразие параметров можно получить у кристаллофосфоров, варьируя активаторы и состав основания (WO 2001060945 A2, 23.08.2001). Известны сцинтилляционные монокристаллы, активированные ионами церия Ce (содержание активатора в кристаллической матрице составляет величину на уровне десятых долей процента), которые обладают одним из самых больших выходов сцинтилляций (см., например, US 7250609 B2, 31.07.2017). Сцинтилляционные материалы, активированные ионами церия, помимо высокого выхода сцинтилляций обладают коротким временем высвечивания. Среди сцинтилляционных кристаллов, активированных ионами церия, присутствуют материалы со структурой граната, обладающей кубической пространственной группой симметрии. Эти кристаллы являются наиболее технологичными, позволяют получать широкий спектр композиций для применения в сцинтилляционных детекторах.

В отличие от самоактивированных сцинтилляционных кристаллов, люминесценция сцинтилляционного монокристалла, легированного ионами церия, обусловлена межконфигурационной d-f люминесценцией, имеющей высокий квантовый выход и незначительный эффект тушения вблизи комнатной температуры. В кристаллах, активированных церием, увеличение светового выхода с уменьшением температуры кристалла не происходит. Более того, некоторые из оксидных сцинтилляторов, легированных церием, особенно перовскитов, например YAlO3, LuAlO3 и их твердых растворов, демонстрируют уменьшение светового выхода на 10-20% при понижении температуры от комнатной до температуры минус 20°C.

В отличие от самоактивированных сцинтилляторов, в сцинтилляторах на основе церий активированных кристаллов, кинетика сцинтилляций слабо зависит от температуры при отклонении температуры от комнатной в диапазоне +/- 50°C. Однако при понижении температуры мелкие ловушки электронов, образующиеся в кристаллах на основе точечных дефектов, обеспечивают дополнительные медленные компоненты в сцинтилляции, а также фосфоресценцию, что приводит к увеличению уровня послесвечения в кристалле.

Использование редкоземельных ионов для формирования кристаллической матрицы сцинтилляционных материалов, таких как лютеций и гадолиний, позволяет создавать материалы с высокой плотностью, например Gd2SiO5, Lu2SiO5, Lu3Al5O12, а при их активации ионами церия Ce сочетать высокую плотность материала и высокий выход сцинтилляций, более 10000 фотонов на 1 МэВ. Однако лютецивые материалы обладают естественной радиоактивностью, что ограничивает их применение в ряде случаев. Кристалл Gd2SiO5 обладает наименьшим выходом сцинтилляций из указанных выше материалов.

Увеличение выхода сцинтилляций в неорганических материалах на основе гадолиния достигается в смешанных гранатах (на основе ионов гадолиния, ионов алюминия и галлия) при активации соединения ионами церия (WO 2012105202 A1, 09.08.2012). US 20150353822 A1, 10.12.2015 раскрывает сцинтилляционный монокристалл Gd3Ga3Al2O12 для радиационных детекторов и способ его получения путем солегирования примесями. Известные материалы обладают высоким выходом сцинтилляций и могут использоваться для регистрации γ-квантов и нейтронов.

Природный гадолиний является смесью шести стабильных изотопов, 154Gd (2.18%), l55Gd (14.8%), 156Gd (20.5%), 157Gd (15.7%), 158Gd (24.8%) и 160Gd (21.9%), причем два из них, 155Gd и 157Gd, имеют наиболее высокие из всех известных стабильных изотопов сечения захвата тепловых нейтронов, 61000 и 254000 барн соответственно. Захват нейтронов сопровождается испусканием γ-квантов с суммарной энергией около 8 МэВ:

n+155Gd→156Gd+γ (8.5 МэВ)

n+157Gd→158Gd+γ (7.9 МэВ).

Наибольший выход среди испускаемых γ-квантов вследствие взаимодействия имеют кванты с энергией 76 кэВ и 179 кэВ. Указанное энерговыделение, равно как и отдельные γ-кванты, могут регистрироваться тем же кристаллом, в котором происходит взаимодействие. Таким образом, известный материал может расширить возможности для регистрации нейтронов в широком энергетическом диапазоне нейтронов.

Однако сложный состав и структура известного сцинтилляционного кристалла, включающего ионы гадолиния, галлия и алюминия, например Gd3Ga3Al2O12, а также склонность одного из основных компонентов – галлия - улетучиваться из расплава, обуславливают повышенную концентрацию дефектов, в частности кислородных вакансий (см. Lamoreaux R Н., et all. "High Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg" J. Phys. Chem. Ref, 1987, data 16 419-43). Кислородные вакансии являются центрами захвата электронов, что обуславливает фосфоресценцию в сцинтилляционном материале за счет туннелирования электронов к центрам люминесценции - трехвалентным ионам церия Ce3+. Для устранения негативного влияния кислородных вакансий в кристалл дополнительно вводятся ионы второй группы, неизовалентно замещающие ионы гадолиния Gd. При указанном неизовалентном замещении в кристаллической матрице граната образуется глубокий центр захвата электронов, который обеспечивает быстрый перезахват захваченных носителей с более мелких уровней, предотвращая тем самым взаимодействие за счет туннелирования носителей с мелких ловушек к ионам церия Ce3+ и гадолиния Gd3+. Захваченный глубоким уровнем электрон рекомбинирует по безызлучательному каналу.

Патентный документ JP 2013043960 A, 04.03.2013 раскрывает сцинтилляционный кристалл алюмо-лютециевого граната Lu3Al5O12 для регистрации гамма-квантов. В монокристаллическом виде кристалл обладает максимальной плотностью 6,7 г/см3 и эффективным зарядом Zэфф=63, что обеспечивает эффективную регистрацию гамма-квантов в широком диапазоне энергий. Однако выход сцинтилляций такого материала не превышает 15000 фот/МэВ, что делает его малопригодным для спектрометрических измерений гамма-квантов в широком диапазоне энергий.

Увеличение выхода сцинтилляций в неорганических материалах со структурой граната достигается путем замены ионов иттрия либо лютеция ионами гадолиния (см., например, US 9193903 B2, 24.11.2015 и JP 2014094996 A, 22.05.2014), а ионов алюминия - парой ионов: алюминия и галлия при активации соединения ионами церия. Монокристаллы гадолиний-алюминий-галлиевого граната со структурной формулой Gd3Al2Ga3O12, активированные ионами церия, обладают высоким выходом сцинтилляций, плотностью 6,67 г/см3, эффективным зарядом Zэфф=51 и обеспечивают высокое энергетическое разрешение (см., например, US 8969812 A1, 21.11.2013 и US 2016017223 A1, 21.01.2016). Недостатком известного сцинтилляционного кристалла является наличие медленных компонент в сцинтилляции и фосфоресценции. Фосфоресценция сцинтилляционного материала обеспечивает дополнительную загрузку фотоприемника, что может увеличить мертвое время регистрации сцинтилляционного детектора и ухудшить отношение сигнал/шум и энергетическое разрешение.

Доля медленных компонент в кинетике сцинтилляций и фосфоресценция сцинтилляционного материала, активированного ионами церия, существенно уменьшаются при со-активации сцинтилляционного вещества двухвалентными ионами Mg, Ca, Sr, Ba. Известные сцинтилляционные материалы Gd3Al2Ga3O12 активированы ионами церия и со-активированы ионами магния Mg либо кальция Ca (см., например, US 20150353822 A1, 10.12.2015). Однако дополнительная со-активация ионами Mg либо Ca приводит к уменьшению выхода сцинтилляций. Уменьшение выхода сцинтилляций обусловлено уменьшением содержания ионов церия в трехвалентном состоянии Ce3+. Так, при увеличении содержания ионов магния до 0,4% выход сцинтилляций в монокристалле Gd3Al2Ga3O12 уменьшается в 2 раза. Таким образом, недостатком известного сцинтилляционного материала Gd3Al2Ga3O12, активированного ионами церия Ce3+ и соактивированного Mg либо Ca, является пониженный выход сцинтилляций по отношению к сцинтилляционному материалу Gd3Al2Ga3O12, активированному ионами церия.

Известен сцинтилляционный материал в виде алюмо-иттриевого граната Y3Al5O12, активированного ионами церия Ce3+ для регистрации гамма-квантов (WO 2006068130 A1, 29.06.2006). В монокристаллическом виде материал обладает максимальной плотностью 4,55 г/см3 и эффективным зарядом Zэфф.=32, что обеспечивает эффективную регистрацию низкоэнергетических гамма-квантов и электронов, однако материал остается неэффективным для использования для регистрации гамма-квантов с энергией более 500 кэВ, используемых, например, в позитронно-эмиссионных томографах. Выход сцинтилляций такого материала не превышает 20000 фот/МэВ, что в совокупности с малым Zэфф. делает его малопригодным для спектрометрических измерений гамма-квантов в широком диапазоне энергий.

Анализ патентной и научно-технической литературы показывает, что в настоящее время отсутствуют сцинтилляционные материалы, которые обладали бы оптимальной совокупностью параметров для решения задач, упомянутых выше. В уровне техники имеется потребность в сцинтилляционных материалах, сочетающих высокий выход сцинтилляций в широком диапазоне температур от минус 50°C до плюс 20°C, высокую эффективность регистрации ионизирующего излучения и короткое время высвечивания сцинтилляций при минимальном уровне послесвечения материала.

Сцинтилляционные свойства материалов существенно зависят от методов их получения. Люминесцентные и сцинтилляционные свойства материалов, полученные различными методами, являются далеко не тождественными. Наблюдаемые различия оптических свойств кристаллов, прежде всего, связаны с различиями в концентрациях основных типов дефектов структуры гранатов, которыми у монокристаллов гранатов являются различного вида вакансии, включая кислородные, а также перераспределение основных компонентов в структуре граната вследствие диссоциативного испарения его легколетучих компонентов, обладающих высокими значениями давления насыщенного пара, например, различные субоксиды галлия Ga3+ или алюминия Al3+. Образование таких дефектов является неизбежным следствием высокой (~2000°C) температуры роста объемных кристаллов гранатов из расплава. Концентрация таких дефектов в легированных редкоземельными ионами кристаллах гранатов является сравнимой с концентрацией ионов-активаторов. При использовании газовых сред с разным парциальным давлением кислорода для роста кристаллов в них также наблюдаются существенные различия в концентрациях вакансионных дефектов, прежде всего вакансий кислорода.

В рамках данной заявки решается комплексная задача получения такого монокристалла со структурой граната для сцинтилляционных датчиков, который позволил бы получить в расширенном диапазоне температур от минус 50°C до плюс 20°C наибольший выход сцинтилляций при одновременном сохранении длительности основной компоненты кинетики сцинтилляций и минимального уровня послесвечения. Решается также задача увеличения энергетического разрешения при регистрации гамма-квантов.

Кроме того, решается задача разработки метода получения таких оксидных монокристаллов со структурой граната для модификации их сцинтилляционных и оптических свойств путем солегирования титаном и элементами второй группы.

Поставленная задача решается тем, что монокристалл со структурой граната для сцинтилляционных датчиков представляет собой соединение, описываемое формулой ((Gd1-rYr)1-s-xMesCex)3-z(Ga1-y-qAlyTiq)5+zO12, причем q находится в диапазоне от 0,00003 до 0,02; r находится в диапазоне от 0 до 1; x находится в диапазоне от 0,001 до 0,01; y находится в диапазоне от 0,2 до 0,6; z находится в диапазоне от -0,1 до 0,1; s находится в диапазоне от 0,0001 до 0,1, при этом Me обозначает, по крайней мере, один элемент из ряда Mg, Ca, Sr, Ba.

Кроме того, флуоресцентная составляющая монокристалла со структурой граната при облучении гамма-квантами генерирует излучение на длине волны в диапазоне 490-650 нм. Световой выход при температуре 20°C составляет величину не менее 45000 фот/МэВ. Световой выход при температуре минус 50°C составляет величину не менее 54000 фот/МэВ.

Флуоресцентная составляющая характеризуется постоянной времени высвечивания основной компоненты кинетики сцинтилляций, составляющей величину не более 50 нс.

Предпочтительно, что доля фотонов сцинтилляций в основной компоненте кинетики сцинтилляций (доля основной компоненты) кинетики сцинтилляций составляет величину не менее 75%; а уровень фосфоресценции через 100 с составляет величину не более 0,7%.

Предпочтительно, что отношение «световыход при минус 50°C / световыход при 20°C» составляет величину не менее 1,2.

Поставленная задача решается тем, что способ получения монокристаллов со структурой граната для сцинтилляционных датчиков включает предварительное приготовление шихты стехиометрического состава из смеси оксидов Gd, Y, Ga, Al, образующих кристаллическую матрицу граната, соединения церия Ce, титана Ti и, по крайней мере, одной из добавок, взятой из ряда Mg, Ca, Sr, Ba, и последующее выращивание из приготовленной шихты монокристаллов методом Чохральского в защитной атмосфере на основе смеси аргона или азота с добавлением кислорода в концентрации, взятой из диапазона от 0,0001 до 5 об. %.

Предпочтительно, что активирующую добавку церия вводят в виде соединения, взятого из ряда: оксид, фторид, хлорид, а легирующую добавку титана вводят в виде окисла.

Целесообразно, что после выращивания полученную монокристаллическую композицию подвергают изотермическому отжигу либо на воздухе, либо в атмосфере инертного газа, либо в вакууме при температуре из диапазона 500-950°C в течение интервала времени, взятого из диапазона от 1 мин до 100 часов.

Сущность изобретения поясняется неограничивающими примерами его реализации, а также таблицами 1 и 2. В таблице 1 перечислены основные параметры известных сцинтилляционных материалов.

В таблице 2 приведены составы и характеристики экспериментальных образцов сцинтилляционных кристаллов в соответствии с данной заявкой.

Данные монокристаллы, со структурой граната заявленной формулы и содержащие группу солегирующих примесей для модификации его сцинтилляционных и оптических свойств, получены выращиванием из расплава по методу Чохральского согласно заявленному способу. Данный способ включает загрузку в тигель предварительно синтезированной шихты, состав которой соответствует составу соединения, описываемому формулой ((Gd1-rYr)1-s-xMesCex)3-z(Ga1-y-qAlyTiq)5+zO12, причем q находится в диапазоне от 0,00003 до 0,02; r находится в диапазоне от 0 до 1; x находится в диапазоне от 0,001 до 0,01; y находится в диапазоне от 0,2 до 0,6; z находится в диапазоне от -0,1 до 0,1; s находится в диапазоне от 0,0001 до 0,1, при этом Me обозначает, по крайней мере, один элемент из ряда Mg, Ca, Sr, Ba, создание защитной атмосферы, последующее расплавление материала, введение вращающегося затравочного ориентированного кристалла в контакт с поверхностью расплава, вытягивание ориентированного кристалла из расплава. В качестве затравочного ориентированного кристалла используют кристалл граната, наиболее близко соответствующий по составу выращиваемому кристаллу.

Для приготовления исходной шихты используют исходные компоненты в виде оксидов или карбонатов исходной чистотой не хуже 99,99%. Содержание примесей в этих оксидах должно быть минимальным и не превышать значений 1 ppm для любого из примесных элементов. Предварительно осушенные исходные оксиды или карбонаты взвешивают в соответствии с химической формулой синтезируемого кристалла, тщательно перемешивают и синтезируют при температуре не менее 1400°C в течение не менее 8 часов. Полученный материал загружают в иридиевый тигель и помещают в ростовую камеру установки для выращивания монокристаллов.

Вокруг тигля размещают теплоизоляционную керамику таким образом, чтобы обеспечить теплоизоляцию тигля и оптимальные температурные условия для роста и сохранения выращенного монокристалла. Также на верхний рабочий шток установки выращивания закрепляют затравкодержатель с предварительно ориентированным затравочным кристаллом из гадолиний-алюминий-галлиевого граната. Затем установку закрывают и вакуумируют с последующим напуском защитной атмосферы на основе аргона или азота с незначительным добавлением кислорода в концентрации от 0,0001 до 5 об. %. После этого осуществляют нагрев с заданной скоростью до плавления исходной шихты, гомогенизации расплава выдержкой его в течении определенного времени от 1 мин до нескольких часов с последующим затравливанием. Затравливание представляет собой процесс контакта затравочного кристалла с поверхностью расплава. Затравочный кристалл при этом вращается с частотой из диапазона 5…30 мин-1. После осуществления затравливания верхний рабочий шток начинает перемещаться вверх с определенной скоростью из диапазона 0,1-5 мм/час. В дальнейшем в соответствии с заданной программой выращивания формируют монокристалл, который при достижении определенного веса отделяют от расплава либо за счет ускоренного перемещения верхнего рабочего штока, либо за счет дополнительного подогрева расплава. Выращенный монокристалл охлаждают до комнатной температуры со скоростью из диапазона 10…100 градусов в час.

Полученный кристалл отжигают на воздухе, либо в атмосфере инертного газа, либо в вакууме при температуре из диапазона 500-950°C в течение интервала времени от 1 мин до 100 часов.

Пример 1. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,9681Ce0,03Mg0,0019Ga2,9998Al2Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 2. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,74Ce0,03Mg0,23Ga2,903Al2Ti0,097O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 3. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,9688Ce0,03Ca0,0012Ga2,9998Al2Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2 и карбоната кальция CaCO3.

Пример 4. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,74Ce0,03Ca0,23Ga2,903Al2Ti0,097O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2 и карбоната кальция CaCO3.

Пример 5. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,9695Ce0,03Sr0,0005Ga2,9998Al2Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2 и карбоната стронция SrCO3.

Пример 6. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,86Ce0,03Sr0,11Ga2,903Al2Ti0,097O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2 и карбоната стронция SrCO3.

Пример 7. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,9697Ce0,03Ba0,0003Ga2,9998Al2Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2 и карбоната бария BaCO3.

Пример 8. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,902Ce0,03Ba0,068Ga2,903Al2Ti0,097O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2 и карбоната бария BaCO3.

Пример 9. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,9888Ce0,01Mg0,0012Ga2,9998Al2Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 10. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,968Ce0,03Mg0,002Ga3,9998Al1Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 11. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,9682Ce0,03Mg0,0018Ga1,9998Al3Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 12. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Y2,9685Ce0,03Mg0,0015Ga2,99985Al2Ti0,00015O12 и синтезированная из смеси оксидов Y2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 13. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,8681Y0,1Ce0,03Mg0,0019Ga2,9998Al2Ti0,0002O12 и синтезированная из смеси оксидов Gd2O3, Y2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 14. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,906Ce0,03Mg0,064Ga2,9956Al2Ti0,0044O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 15. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,922Ce0,03Mg0,048Ga2,9968Al2Ti0,0032O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 16. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,952Ce0,01Mg0,038Ga2,5975Al2,4Ti0,0025O12 и синтезированная из смеси оксидов Gd2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Пример 17. Для выращивания монокристалла по методу Чохральского была использована исходная шихта, соответствующая составу Gd2,824Y0,1Ce0,03Mg0,046Ga2,9972Al2Ti0,0028O12 и синтезированная из смеси оксидов Gd2O3, Y2O3, Ga2O3, Al2O3, CeO2, TiO2, MgO.

Из выращенных монокристаллов были изготовлены образцы для проведения измерений в форме дисков диаметром 25 мм и толщиной 7 мм.

Измерения выхода сцинтилляций проводили стандартным для гамма-спектроскопии методом. Образцы устанавливались на фотоэлектронный умножитель PHILIPS XP2020 через оптическую иммерсионную смазку, накрывались светоотражателем и облучались гамма-источником Cs-137 с энергией гамма-квантов 662 кэВ. Амплитудные спектры накапливались в многоканальном амплитудном анализаторе. Выход сцинтилляций образцов относительно друг друга определялся как отношение положений пиков полного поглощения гамма-квантов 662 кэВ на шкале амплитудного анализатора.

Измерения кинетики сцинтилляций проводили методом задержанных совпадений. Для измерений использовался измерительный стенд на основе источника аннигиляционных гамма-квантов Na-22, двухканальной измерительной установки со «стартовым» каналом на основе сцинтилляционного кристалла CsF и фотоэлектронного умножителя PHILIPS XP2020 и со «стоповым» каналом на основе фотоэлектронного умножителя PHILIPS XP2020Q. Временная привязка к сигналам фотоэлектронных умножителей осуществлялась двумя формирователями со следящим порогом, сигналы с которых поступали во время-амплитудный преобразователь, преобразующий разницу времен прихода стартового и стоповых сигналов в импульс выходного напряжения с амплитудой, пропорциональной этой разнице, поступающий далее в многоканальный амплитудный анализатор. Измеренные спектры кинетики сцинтилляций обрабатывались в программном пакете ROOT v. 5.26, определялись постоянные времени основной компоненты высвечивания и ее вес (доля) в кинетике сцинтилляций.

Послесвечение измеряли методом, схожим с описанным в [K. Kamada, et al., Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator, Opt. Mater. (Amst). 41 (2015) 63-66. doi: 10.1016 / j. optmat. 2014.10.008]. Измерения вели в режиме счета фотонов путем измерения скорости счета с фотоэлектронного умножителя PHILIPS XP2020 через: а) 100 с после остановки облучения образца источником рентгеновского излучения в течение 15 минут Sa, б) измерения скорости счета непосредственно перед прекращением облучения образца Sb и в) измерения «темновой» скорости счета без установленного на фотоэлектронный умножитель образца Sc. Образцы устанавливали на фотоэлектронный умножитель через оптическую диафрагму диаметром 1 мм для уменьшения максимальной скорости счета и недопущения пропуска импульсов при определении скорости счета при облучении образца. Скорость счета измеряли с помощью цифрового частотомера. Порог дискриминации частотомера выставляли настолько низко, чтобы захватить большую часть отсчетов в одноэлектронном пике фотоэлектронного умножителя, но при этом избежать регистрации малоамплитудных электронных шумов. Уровень фосфоресценции определяли как выраженное в процентах отношение скоростей счета (Sa-Sc)/(Sb-Sc).

Использование данного изобретения позволяет получить монокристалл со структурой граната для сцинтилляционных датчиков со структурой граната, обладающие в диапазоне температур от минус 50°C до плюс 20°C следующими характеристиками:

- Световыход при T 20°C, не менее 45000 фот/МэВ;

- Световыход при T минус 50°C, не менее 54000 фот/МэВ;

- Длительность основной компоненты кинетики сцинтилляций - не более 50 нс;

- Доля основной компоненты кинетики сцинтилляций - не менее 75%;

- Уровень фосфоресценции через 100 с, % - не более 0,7%;

Отношение (световыход при T минус 50°C / световыход при T 20°C) - не менее 1,2.

Преимущества данного изобретения обеспечиваются тем, что в результате соактивации ионами титана увеличивается выход сцинтилляций в широком диапазоне температур от +20°C до -50°C и, как следствие, улучшается энергетическое разрешение при регистрации гамма-квантов. Это позволяет расширить возможности использования сцинтилляционного материала с различными фотоприемниками, например кремниевыми фотоумножителями, достигающими минимальных значений шумовых характеристик за счет охлаждения.

Похожие патенты RU2646407C1

название год авторы номер документа
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Аленков Владимир Владимирович
  • Бузанов Олег Алексеевич
  • Васильев Владимир Борисович
  • Коржик Михаил Васильевич
RU2723395C1
СЦИНТИЛЛЯЦИОННОЕ ВЕЩЕСТВО В ВИДЕ КРИСТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ НА ОСНОВЕ СИЛИКАТА 2006
  • Анненков Александр Николаевич
  • Досовицкий Алексей Ефимович
  • Коржик Михаил Васильевич
  • Лигун Владимир Дмитриевич
RU2315136C1
СЦИНТИЛЛЯЦИОННОЕ ВЕЩЕСТВО В ВИДЕ КРИСТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ НА ОСНОВЕ СИЛИКАТА 2007
  • Анненков Александр Николаевич
  • Досовицкий Алексей Ефимович
  • Коржик Михаил Васильевич
  • Лигун Владимир Дмитриевич
  • Мисевич Олег Валентинович
  • Михлин Александр Леонидович
  • Федоров Андрей Анатольевич
RU2357025C2
СПОСОБ РЕГУЛИРОВАНИЯ СОДЕРЖАНИЯ ГАЛЛИЯ В СЦИНТИЛЛЯТОРАХ НА ОСНОВЕ ГАДОЛИНИЙ-ГАЛЛИЕВЫХ ГРАНАТОВ 2016
  • Андреако Марк С.
  • Кэри Александер Эндрю
  • Коэн Питер Карл
RU2670865C2
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯЦИОННОГО МОНОКРИСТАЛЛА ЛЮТЕЦИЙ-ИТТРИЕВОГО АЛЮМИНАТА 2003
  • Анненков А.Н.
  • Коржик Михаил Васильевич
  • Лигун В.Д.
RU2233916C1
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЯЦИОННОГО СТЕКЛА 2014
  • Досовицкий Алексей Ефимович
  • Досовицкий Георгий Алексеевич
RU2564291C1
СЦИНТИЛЛЯЦИОННОЕ ВЕЩЕСТВО (ВАРИАНТЫ) И СЦИНТИЛЛЯЦИОННЫЙ ВОЛНОВОДНЫЙ ЭЛЕМЕНТ 1998
  • Заварцев Ю.Д.(Ru)
  • Загуменный А.И.(Ru)
  • Студеникин П.А.(Ru)
RU2157552C2
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯЦИОННОГО МОНОКРИСТАЛЛА ВОЛЬФРАМАТА СВИНЦА 1998
  • Анненков А.Н.
  • Коржик М.В.
  • Костылев В.Л.
  • Лигун В.Д.
RU2132417C1
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯЦИОННОГО КРИСТАЛЛА И ИЗДЕЛИЙ ИЗ НЕГО 2022
  • Ермоченков Иван Максимович
  • Загуменный Александр Иосифович
  • Заварцев Юрий Дмитриевич
  • Кутовой Сергей Александрович
  • Юрасова Ольга Викторовна
  • Самиева Динара Акжолтоевна
RU2783941C1
Способ регистрации нейтронов и устройство для его осуществления 2017
  • Коржик Михаил Васильевич
  • Федоров Андрей Анатольевич
  • Мечинский Виталий Александрович
  • Досовицкий Алексей Ефимович
  • Досовицкий Георгий Алексеевич
RU2663683C1

Реферат патента 2018 года МОНОКРИСТАЛЛ СО СТРУКТУРОЙ ГРАНАТА ДЛЯ СЦИНТИЛЛЯЦИОННЫХ ДАТЧИКОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе. Монокристалл со структурой граната для сцинтилляционных датчиков представляет собой соединение, описываемое формулой ((Gd1-rYr)1-s-xMesCex)3-z(Ga1-y-qAlyTiq)5+zO12, причем q находится в диапазоне от 0,00003 до 0,02; r находится в диапазоне от 0 до 1; х находится в диапазоне от 0,001 до 0,01; y находится в диапазоне от 0,2 до 0,6; z находится в диапазоне от -0,1 до 0,1; s находится в диапазоне от 0,0001 до 0,1, при этом Me обозначает, по крайней мере, один элемент из ряда Mg, Са, Sr, Ва. Изобретение позволяет увеличить выход сцинтилляций в расширенном интервале температур (от минус 20°C до плюс 50°C) и повысить энергетическое разрешение сцинтилляционных детекторов при регистрации гамма-квантов. Технический результат достигается за счет того, что монокристалл со структурой граната солегирован церием, титаном и элементами второй группы в заданном соотношении. Данный монокристалл получают методом Чохральского с последующим изотермическим отжигом. 2 н. и 8 з.п. ф-лы, 2 табл., 17 пр.

Формула изобретения RU 2 646 407 C1

1. Монокристалл со структурой граната для сцинтилляционных датчиков, представляющий собой соединение, описываемое формулой ((Gd1-rYr)1-s-xMesCex)3-z(Ga1-y-qAlyTiq)5+zO12, причем q находится в диапазоне от 0,00003 до 0,02; r находится в диапазоне от 0 до 1; х находится в диапазоне от 0,001 до 0,01; y находится в диапазоне от 0,2 до 0,6; z находится в диапазоне от -0,1 до 0,1; s находится в диапазоне от 0,0001 до 0,1, при этом Me обозначает, по крайней мере, один элемент из ряда Mg, Са, Sr, Ва.

2. Монокристалл со структурой граната для сцинтилляционных датчиков по п. 1, характеризующийся тем, что при облучении гамма-квантами упомянутого выше соединения флуоресцентная составляющая генерирует излучение на длине волны в диапазоне 490-650 нм.

3. Монокристалл со структурой граната для сцинтилляционных датчиков по п. 1, характеризующийся тем, что световой выход при температуре 20°С составляет величину не менее 45000 фот/МэВ.

4. Монокристалл со структурой граната для сцинтилляционных датчиков по п. 1, характеризующийся тем, что световой выход при облучении гамма-источником Cs-137 с энергией гамма-квантов 662 кэВ при температуре минус 50°С составляет величину не менее 54000 фот/МэВ.

5. Монокристалл со структурой граната для сцинтилляционных датчиков по п. 1, характеризующийся тем, что длительность основной компоненты кинетики сцинтилляций составляет величину не более 50 нс.

6. Монокристалл со структурой граната для сцинтилляционных датчиков по п. 1, характеризующийся тем, что доля основной компоненты кинетики сцинтилляций составляет величину не менее 75%; а уровень фосфоресценции через 100 с - не более 0,7%.

7. Монокристалл со структурой граната для сцинтилляционных датчиков по п. 1, характеризующийся тем, что отношение величины светового выхода монокристалла при температуре минус 50°С к величине светового выхода монокристалла при температуре плюс 20°С составляет величину не менее 1,2.

8. Способ получения монокристаллов со структурой граната для сцинтилляционных датчиков по п. 1, включающий предварительное приготовление шихты стехиометрического состава в соответствии с химической формулой соединения по п. 1 из смеси оксидов Gd, Y, Ga, Al, Ti, Mg, введение церия в виде соединения, взятого из ряда: оксид, или фторид, или хлорид; Ва, или Sr, или Са в виде карбоната, и последующее выращивание монокристаллов из полученной шихты по методу Чохральского.

9. Способ по п. 8, характеризующийся тем, что выращивание монокристаллов по методу Чохральского проводят в защитной атмосфере на основе аргона или азота с добавлением кислорода в концентрации из диапазона от 0,0001 до 5 об. %.

10. Способ по п. 8, характеризующийся тем, что выращенный монокристалл подвергают изотермическому отжигу при температуре из диапазона 500-950°С в течение времени, взятого из диапазона от 1 мин до 100 часов, либо на воздухе, либо в атмосфере инертного газа, либо в вакууме.

Документы, цитированные в отчете о поиске Патент 2018 года RU2646407C1

US 2015353822 A1, 10.12.2015
KAMADA K
et al, Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd 3 Al 2 Ga 3 O 12 scintillator, "Optical Materials", 2015, Vol
Механический грохот 1922
  • Красин Г.Б.
SU41A1

RU 2 646 407 C1

Авторы

Аленков Владимир Владимирович

Бузанов Олег Алексеевич

Досовицкий Алексей Ефимович

Досовицкий Георгий Алексеевич

Коржик Михаил Васильевич

Федоров Андрей Анатольевич

Даты

2018-03-05Публикация

2017-06-02Подача