СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ ГЕРМАНИЙ-СЕЛЕН Российский патент 2018 года по МПК C03C3/32 C03B5/00 

Описание патента на изобретение RU2648389C1

Изобретение относится к материалам для инфракрасной оптики, в частности, к способу получения особо чистых халькогенидных стекол системы германий-селен (Ge-Se), которые используются для изготовления оптических окон, линз, волоконных световодов для оптических и оптоэлектронных устройств, работающих в среднем ИК-диапазоне.

Для успешного применения в этих областях стекла должны обладать низким содержанием оптически активных примесей (водорода, кислорода, углерода и др.), поглощающих в спектральном диапазоне 2-10 мкм.

Известен способ получения стекол системы Ge-Se состава Ge2Se3 [В. Voight, G. Dreisler, Microheterogeneities in infrared optical selenide glasses. - Journal of Non-Cryst. Solids. - 1987. - Vol. 58. - P. 41-45], включающий загрузку германия полупроводниковой чистоты и селена с марки 99.999% в реактор из кварцевого стекла в сухом перчаточном боксе, вакуумирование реактора, синтез стеклообразующего расплава при температуре 800°C в течение 5 часов, закалку расплава на воздухе. Для снижения содержания примесей проводят дистилляционную очистку расплава при 800°C в двухсекционном вакуумированном кварцевом реакторе.

Существенным недостатком данного способа является высокая температура синтеза и дистилляции стеклообразующего расплава, способствующая поступлению в него примесей водорода, кремния и кислорода из стенок кварцевой ампулы. В частности, в данной работе отмечается появление интенсивной полосы поглощения в спектрах пропускания стекол в области 9 мкм, соответствующей примеси оксида кремния.

Известен способ получения халькогенидных стекол, который включает загрузку компонентов шихты в вакуумированный кварцевый реактор, при этом в качестве компонентов шихты, наряду с халькогенами, используют летучие иодиды элементов [Патент РФ №2467962, МКИ С03С 3/32, опубл. 27.11.2012]. Синтез стеклообразующих соединений ведут при температуре 650°C в реакторе, соединенном с разделительной секцией, при управляемой скорости нагрева и выводе из реактора йода, образующегося при химическом превращении исходных йодидов, и возвращении в зону реакции непрореагировавших йодидов элементов до достижения заданного макросостава расплава.

Основным недостатком этого способа для получения стекол системы Ge-Se взаимодействием йодида германии(IV) с селеном является сложность достижения заданного химического макросостава стекла. Это связано с тем, что в процессе синтеза из стеклообразующего расплава, несмотря на использование разделительной секции, совместно с выделяющимся йодом может удаляться заметное количество йодида германия(IV), обладающего при температурах синтеза стекла повышенной летучестью. Это также связано со сложностью полного удаления йода из состава стекла в виду сравнимых по значениям энергий связи Ge-Se и Ge-I (205.61 и 186.97 кДж/моль, соответственно). Указанные факторы могут приводить к заметному отклонению макросостава стекла от требуемого, что недопустимо для получения материалов с заданным набором физико-химических свойств.

Наиболее близким к заявляемому, выбранным в качестве прототипа, является способ получения особо чистых стекол системы Ge-Se, включающий дистилляционную загрузку селена в вакуумированный кварцевый реактор с германием, синтез стеклообразующего расплава, дистилляционную очистку расплава при 750°C, гомогенизацию расплава при 750°C и его закалку на воздухе [J. Troles, V. Shiryaev, М. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR, Opt. Mater. 32(2009) 212-215]. Содержание примеси водорода в форме SeH-групп в полученном стекле, оцененное по полосе поглощения в спектре оптических потерь волоконного световода, составило 0.06 ppm массовых.

Недостатком способа является необходимость проведения дистилляционной очистки расплава при повышенных температурах. Это обусловлено относительно невысокой летучестью селенида германия(IV) (0.6 мм рт.ст. при 550°C [А.В. Новоселова, А.С. Пашинкин, Давление пара летучих халькогенидов металлов. - М.: Наука, 1978,. с. 68]), образующегося в расплаве при взаимодействии германия с селеном. Длительное выдерживание халькогенидного расплава при повышенных температурах способствует поступлению в него примесей водорода и оксида кремния из стенок кварцевого реактора [Г.Г. Девятых, М.Ф. Чурбанов, Высокочистые халькогены. - Изд-во Нижегородского университета, 1991, с. 231]. Это приводит к появлению полос примесного поглощения от связей Se-H (3.55, 4.15 и 4.57 мкм) и Si-O (в области 9 мкм), что ухудшает оптические свойства стекол. Недостатком этого способа также является то, что испарение селенида германия(IV) сопровождается его частичным разложением по реакции

GeSe2=GeSe+Se,

что затрудняет получение стекла заданного химического состава [А.В. Новоселова, А.С. Пашинкин, Давление пара летучих халькогенидов металлов. - М.: Наука, 1978, с. 67].

Задачей, на которую направлено изобретение, является разработка способа получения особо чистых халькогенидных стекол системы германий-селен заданного химического состава с низким содержанием примесей, поглощающих в спектральном диапазоне 2-10 мкм.

Технический результат от использования изобретения заключается в снижении содержания в стеклах примесей, поглощающих в спектральном диапазоне 2-10 мкм, и, как следствие, увеличении оптической прозрачности стекол.

Указанный результат достигается тем, что в способе получения особо чистых халькогенидных стекол системы германий-селен, включающем загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку, в качестве источника германия используют селенид германия(II), который получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава.

Компонентами шихты являются селенид германия(II) и селен.

Способ осуществляют следующим образом. В первую секцию горизонтальной четырехсекционной ампулы из кварцевого стекла помещают селен, во вторую - германий, третья секция служит приемником образующегося селенида германия(II), четвертая секция необходима для сублимационной очистки селенида германия(II). Ампулу вакуумируют, секцию с германием нагревают до температуры не выше 600°C, так как при более высоких температурах начинает заметно проявляться загрязняющее действие материала аппаратуры и происходит частичное разложение селенида германия(II). Нагревают секцию ампулы с селеном, что приводит к его испарению во вторую секцию и образованию селенида германия(II), который конденсируется в третьей секции. По окончании синтеза первую и вторую секции отпаивают от ампулы и проводят сублимационную очистку селенида германия(II). Для этого третью секцию нагревают до температуры не выше 600°C, селенид германия(II) при этом конденсируется в четвертой секции. Полученный селенид германия(II) загружают из четвертой секции ампулы вакуумным испарением при температуре не выше 600°C в вакуумированный кварцевый реактор. Затем в этот реактор вакуумным испарением загружают необходимое количество селена для получения стекла заданного химического состава.

Новым в способе является то, что в качестве источника германия используют селенид германия(II), который обладает достаточно высоким давлением насыщенного пара (5 мм рт.ст. при температуре 550°C). Это позволяет проводить глубокую очистку германийсодержащего компонента шихты от оптически активных примесей методом вакуумной сублимации при температурах не выше 600°C, что практически исключает заметное проявление загрязняющего действия материала кварцевой аппаратуры. Снижение температуры очистки селенида германия(II) по сравнению с температурой очистки стеклообразующего расплава в прототипе способствует более эффективному удалению примеси оксида германия(IV). Сублимация селенида германия(II) при указанных температурах протекает без заметного разложения, что позволяет получать стекла системы Ge-Se заданного химического состава.

Новым в способе является то, что дополнительная очистка компонентов шихты происходит на этапе синтеза селенида германия(II) пропусканием паров селена над германием. Примеси углерода и оксидов германия, присутствующие в исходном германии, в указанных выше условиях не взаимодействуют с селеном и не испаряются совместно с селенидом германия(II). Примеси оксида селена(IV), селеноводорода и воды, присутствующие в исходном селене, взаимодействуют с германием с образованием нелетучего оксида германия(IV) и летучих примесей воды и водорода по реакциям:

Ge+SeO2=GeO2+Se;

Ge+H2Se=GeSe+H2;

Ge+2H2O=GeO2+2H2;

GeO2+2H2Se=GeSe2+2H2O.

Оксид германия(IV) при указанных условиях проведения синтеза селенида германия(II) остается в секции ампулы с исходным германием, а примеси водорода и воды удаляются за счет постоянной откачки реактора.

Указанные отличительные признаки являются существенными, так как каждый из них необходим, а в совокупности они достаточны для достижения поставленной задачи - разработка способа получения особо чистых стекол системы германий-селен заданного химического состава с низким содержанием примесей, поглощающих в спектральном диапазоне 2-10 мкм.

Пример 1.

Для получения 50 г стекла состава Ge20Se80 синтезируют 19.508 г селенида германия(II). Для этого в первую секцию четырехсекционной кварцевой ампулы помещают 10.164 г селена, во вторую секцию загружают 9.344 г германия, ампулу вакуумируют. Секцию с германием нагревают до 580°C, затем нагревают секцию с селеном до 350°C. Образующийся при этом селенид германия(II) конденсируется в третьей секции. По окончании синтеза первую и вторую секции отпаивают от ампулы и проводят сублимационную очистку селенида германия(II) при 580°C. После полной сублимации селенида германия(II), четвертую секцию отпаивают и подпаивают к кварцевому реактору, к которому припаяна ампула с 30.492 г селена. Реактор вакуумируют и проводят загрузку в него селенида германия(II) испарением при 580°C. После полного испарения селенида германия(II) в вакуумированный кварцевый реактор загружают селен испарением при 400°C. Затем реактор с полученной шихтой, состоящей из селенида германия(II) и селена, отпаивают от вакуумной системы и помещают в печь. Температуру печи повышают до 750°C и проводят гомогенизацию стеклообразующего расплава при этой температуре в течение двух часов. Далее расплав охлаждают на воздухе до отверждения в стекло, которое отжигают для снятия механических напряжений.

Пример 2.

Для получения 50 г стекла состава Ge15Se85 синтезируют 14.570 г селенида германия(II). Для этого в первую секцию четырехсекционной кварцевой ампулы помещают 7.591 г селена, во вторую секцию загружают 6.979 г германия, ампулу вакуумируют. Далее синтезируют и очищают селенид германия(II), как описано в примере 1. Секцию с полученным селенидом германия(II) подпаивают к кварцевому реактору, к которому припаяна ампула с 35.430 г селена. Реактор вакуумируют и загружают в него селенид германия(II) при температуре 580°C. После полного испарения селенида германия(II) в вакуумированный кварцевый реактор загружают селен при температуре 400°C. Далее реактор отпаивают и помещают в печь, которую нагревают до 750°C. Гомогенизацию стеклообразующего расплава проводят при указанной температуре в течение двух часов. Затем расплав охлаждают на воздухе до стеклообразного состояния и отжигают полученное стекло.

Согласно результатам анализа полученных стекол методом ИК-Фурье спектроскопии, содержание примесей, поглощающих в спектральном диапазоне 2-10 мкм, составляет: примеси водорода в форме SeH-групп - 0.005 ppm массовых; кислорода в форме связей Ge-O <0.1 ppm массовых; воды <0.05 ppm массовых, что приводит к увеличению оптической прозрачности стекол.

Для получения стекол системы Ge-Se по разработанному способу с низким содержанием оптически активных примесей в качестве заготовок для изготовления реактора необходимо использовать трубки из кварцевого стекла высокого оптического качества с низким содержанием ОН-групп, селен марки не хуже «осч 16-5», дополнительно очищенный вакуумной дистилляцией, германий с содержанием основного вещества не ниже 99.9999 мас. %.

Таким образом, предлагаемый способ позволяет получать особо чистые халькогенидные стекла системы германий-селен заданного химического состава с низким содержанием примесей, поглощающих в спектральном диапазоне 2-10 мкм, что приводит к увеличению оптической прозрачности стекол.

Похожие патенты RU2648389C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ, СОДЕРЖАЩИХ ГАЛЛИЙ 2021
  • Суханов Максим Викторович
  • Вельмужов Александр Павлович
  • Тюрина Елизавета Александровна
  • Благин Роман Дмитриевич
RU2770494C1
Способ получения особо чистых халькогенидных стекол 2018
  • Суханов Максим Викторович
  • Вельмужов Александр Павлович
  • Ширяев Владимир Семенович
  • Караксина Элла Владимировна
  • Чурбанов Михаил Федорович
RU2698340C1
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ, СОДЕРЖАЩИХ ЙОДИД СЕРЕБРА 2022
  • Вельмужов Александр Павлович
  • Суханов Максим Викторович
  • Тюрина Елизавета Александровна
RU2781425C1
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ 2023
  • Вельмужов Александр Павлович
  • Суханов Максим Викторович
  • Тюрина Елизавета Александровна
  • Лашманов Евгений Николаевич
RU2810665C1
Способ получения особо чистых стекол системы германий - сера - йод 2016
  • Вельмужов Александр Павлович
  • Суханов Максим Викторович
  • Чурбанов Михаил Федорович
RU2618257C1
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ТЕЛЛУРИДНЫХ СТЕКОЛ 2023
  • Вельмужов Александр Павлович
  • Тюрина Елизавета Александровна
  • Суханов Максим Викторович
RU2807334C1
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ТУГОПЛАВКИХ ХАЛЬКОЙОДИДНЫХ СТЕКОЛ 2011
  • Чурбанов Михаил Федорович
  • Сибиркин Алексей Алексеевич
  • Вельмужов Александр Павлович
  • Ширяев Владимир Семенович
  • Дианов Евгений Михайлович
  • Плотниченко Виктор Геннадьевич
RU2467962C1
СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА 2009
  • Снопатин Геннадий Евгеньевич
  • Плотниченко Виктор Геннадьевич
  • Чурбанов Михаил Федорович
RU2419589C1
СПОСОБ ПОЛУЧЕНИЯ СТЕКОЛ ASS(X=0,10-0,45), ASSE(X=0-0,60) 1999
  • Ананичев В.А.
  • Блинов Л.Н.
RU2152364C1
Способ получения особо чистого селена 2019
  • Чурбанов Михаил Федорович
  • Снопатин Геннадий Евгеньевич
  • Суханов Максим Викторович
RU2706611C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ ГЕРМАНИЙ-СЕЛЕН

Изобретение относится к способу получения особо чистых халькогенидных стекол системы германий-селен. Способ включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку. В качестве источника германия используют селенид германия(II). Селенид германия (II) получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава. Технический результат – снижение содержания в стеклах примесей, поглощающих в спектральном диапазоне 2-10 мкм, и, как следствие, увеличении оптической прозрачности стекол. 1 з.п. ф-лы, 2 пр.

Формула изобретения RU 2 648 389 C1

1. Способ получения особо чистых халькогенидных стекол системы германий-селен, включающий загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку, отличающийся тем, что в качестве источника германия используют селенид германия(II), который получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава.

2. Способ по п. 1, отличающийся тем, что компонентами шихты являются селенид германия(II) и селен.

Документы, цитированные в отчете о поиске Патент 2018 года RU2648389C1

TROLES J
et al
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Optical material, N32, 2009, p
Приспособление для записи звуковых колебаний 1921
  • Вишневский Д.
  • Вишневский Л.
SU212A1
СПОСОБ ПОЛУЧЕНИЯ ОСОБО ЧИСТЫХ ТУГОПЛАВКИХ ХАЛЬКОЙОДИДНЫХ СТЕКОЛ 2011
  • Чурбанов Михаил Федорович
  • Сибиркин Алексей Алексеевич
  • Вельмужов Александр Павлович
  • Ширяев Владимир Семенович
  • Дианов Евгений Михайлович
  • Плотниченко Виктор Геннадьевич
RU2467962C1
Халькогенидное стекло 1989
  • Куценко Ярослав Павлович
  • Шукалюк Николай Петрович
  • Тимко Тамара Владимировна
  • Баран Николай Юрьевич
  • Фирцак Юрий Юрьевич
SU1694496A1
US 6634189 B1, 21.10.2003
JP 63017231 A, 25.01.1988.

RU 2 648 389 C1

Авторы

Вельмужов Александр Павлович

Суханов Максим Викторович

Чурбанов Михаил Федорович

Даты

2018-03-26Публикация

2017-06-20Подача