Изобретение относится к технологии выращивания кристаллов неорганических соединений из расплава методом вертикальной направленной кристаллизации, в частности фторидных кристаллов, которые широко используются, например, в оптике, фотонике, физике высоких энергий. Конкретно способ направлен на создание технологии, обеспечивающей выращивание кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3 (где М - один или несколько металлов из группы Са, Sr, Ва) с высоким светопропусканием в ближней УФ- и в видимой области спектра, не требующей применения фторирующих агентов на основе летучих фторидов металлов (например, фторида свинца PbF2, фторида цинка ZnF2, фторида кобальта CoF2, фторида кадмия CdF2), приводящих к экологически опасным выбросам и к загрязнению получаемых кристаллов этими компонентами.
Кристаллы гетеровалентных твердых растворов в системах M/F2-CeF3 (где М - один или несколько металлов из группы Са, Sr, Ва, содержание CeF3 от 0 до 50% мол.) являются перспективными полифункциональными материалами, физическими свойствами которых можно управлять в широких пределах. Они представляют интерес для оптического приборостроения специального назначения, поскольку для широкого круга задач в области селективной фильтрации излучения в указанном ряду материалов могут быть подобраны оптимальные составы. В отличие от широко применяемых в УФ-оптике кристаллов М'Т2 (где М' - металлы группы IIA), материалы в системе MF2-CeF3 обладают улучшенными механическими свойствами (в частности, слабой выраженностью спайности), что облегчает их оптическую обработку и повышает надежность изделий.
Кристаллы гетеровалентных твердых растворов в системах МF2-СеF3 (где M - один или несколько металлов из группы Са, Sr, Ва) так же, как и большинство других фторидных кристаллов, во избежание пирогидролиза, приводящего к ухудшению оптических характеристик, традиционно выращивают во фторирующей атмосфере. Для этого в ростовую зону вводятся газообразные фторирующие агенты (тетрафторметан CF4, продукты пиролиза политетрафторэлитена, фтороводород HF, фторид бора BF3, фторид серы SF6 (R.C Pastor // Journal of Crystal Growth. 1999. Vol. 203. Issue 3. P. 421-424)). По опыту выращивания кристаллов большого количества составов в системах MF2-CeF3 известно, что в таких условиях (во всех газообразных фторирующих агентах, кроме фтороводорода HF) у выращенных материалов появляется желтоватая или коричневая окраска, препятствующая применению кристаллов в качестве прозрачных светофильтров. Окрашивание кристаллов связано с высокой окислительной способностью фторсодержащей атмосферы и способностью ионов церия Се3+ окисляться, что генерирует образование центров окраски.
Известен способ получения бесцветных кристаллов высокого оптического качества, основанный на применений в качестве фторирующего агента фтороводорода HF (Н. Guggenheim // J. Appl. Phys. 1963. Vol. 34. No. 8. P. 2482-2485), который не является окислителем и, соответственно, не окисляет ионы Се3+ и не генерирует образование центров окраски.
Недостатками описанного способа являются:
- высокая токсичность фтороводорода HF;
- высокая коррозионная активность фтороводорода HF, что создает риск повреждения ростового оборудования.
Известен способ получения бесцветных кристаллов в ряду MF2-CeF3 (Д.H. Каримов, Н.А. Ивановская, Н.В. Самсонова, Н.И. Сорокин, Б.П. Соболев, П.А. Попов // Кристаллография. 2013. Т. 58. №5. с. 737-741).
Известен способ выращивания кристаллов многокомпонентных фторидов со структурой флюорита, включающий кристаллизацию из расплава шихты фторидов щелочноземельных металлов и церия в атмосфере фторирующих агентов способом вертикальной направленной кристаллизации с последующим послеростовым охлаждением и термообработкой (Д.Н. Каримов, Н.А. Ивановская, Н.В. Самсонова, Н.И. Сорокин, Б.П. Соболев, П.А. Попов // Кристаллография. 2013. Т. 58. №5. с. 737-741). Этот способ позволяет выращивать бесцветные кристаллы в ряду МF2-СеF3. Однако выращивание бесцветных фторидных кристаллов обеспечивалось тем, что для создания фторирующей атмосферы вместо обычно применяемого тетрафторметана CF4 использовались твердые фторирующие агенты - фториды металлов, реагирующие с основным расплавом, извлекая из него кислород в виде летучих соединений. Условием применения твердых фторирующих агентов является их собственная высокая летучесть, сочетающаяся с летучестью кислородсодержащих продуктов реакции «очистки». Избыток (против стехиометрии реакции очистки) самих агентов и продукты всех реакций, кроме основного фторидного расплава, удаляются из него испарением. В указанной работе в качестве твердых фторирующих агентов использовались фторид свинца PbF2 и фторид цинка ZnF2. В результате были получены визуально бесцветные кристаллы твердого раствора со структурой флюорита в системе SrF2-CeF3, высокая прозрачность в УФ- и видимой диапазонах подтверждена спектроскопически.
Недостатками описанного способа, принятого за прототип, являются:
- экологически вредные выбросы легколетучих фторидов металлов;
- загрязнение кристаллов металлами, входящими в состав твердых фторирующих агентов.
Технической задачей предлагаемого способа является создание технологии, в которой преодолены указанные недостатки.
Техническим результатом является создание технологии, обеспечивающей получение в ростовом цикле кристаллов в системах MF2-CeF3 (где М - один или несколько металлов из группы Са, Sr, Ва) высокого качества при отсутствии экологически вредных выбросов легколетучих фторидов и не требующей применения высокоагрессивных веществ, способных повреждать ростовое оборудование.
Решение поставленной технической задачи и достижение технического результата обеспечиваются тем, что в способе выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, включающем кристаллизацию из расплава шихты, состоящей из фторидов щелочноземельных металлов и церия, в атмосфере фторирующих агентов способом вертикальной направленной кристаллизации с последующим послеростовым охлаждением в качестве шихты применяют смесь фторидов одного или нескольких щелочноземельных металлов (Са, Sr, Ва) и фторида церия при мольном содержании фторида церия от 0,05 до 50%, что обеспечивает получение флюоритовой фазы, процесс послеростового охлаждения ведут до температуры в интервале 400-500°С, после достижения этой температуры из ростовой зоны удаляют газообразные фторирующие агенты и ведут термообработку в неокислительной атмосфере при температуре 400-500°С не менее 5 часов, а затем медленно охлаждают кристалл до комнатной температуры. В качестве способа вертикальной направленной кристаллизации возможно применение способа Бриджмена-Стокбаргера. Неокислительную атмосферу в процессе термообработки создают вакуумированием зоны термообработки до давления не выше 5⋅10-6 мм рт.ст., причем после создания вакуума зона термообработки может быть заполнена инертным газом, например аргоном.
Охлаждение выращенного кристалла до комнатной температуры ведут со скоростью не более 50°C/ч. Для создания фторирующей атмосферы либо в шихту вводят политетрафторэтилен, разлагающийся при нагревании с образованием фторирующих газов, либо заполняют ростовую зону фторсодержащим газом, например тетрафторметаном, фторидами серы или бора.
Реализация предлагаемого способа и полученные результаты иллюстрируются на чертежах, где
фиг. 1 - блок схема операций, осуществляемых в способе;
фиг. 2 - график изменения коэффициента пропускания кристаллов Sr0.35Ba0.35Ce0.30F2.30 в зависимости от длины волны:
кривая 1 - окрашенный кристалл, выращенный в соответствии со способом, принятым за прототип;
кривая 2 - бесцветный кристалл, выращенный предлагаемым способом с использованием термической обработки при 470±20°C в атмосфере инертного газа (аргон) в течение 5 часов;
фиг. 3 - фотографии кристаллов, выращенных известным способом (позиция 1) и предлагаемым способом (позиция 2).
Пример реализации способа
Последовательность технологических действий приведена на фиг. 1.
Рост кристаллов осуществляли методом направленной кристаллизации на установке КРФ (производство СКБ ИК РАН) в графитовых многоячеистом тигле и тепловом узле. Выращивание фторидных кристаллов в атмосфере газообразных фторирующих агентов (тетрафторметан CF4) вели без добавления твердых фторирующих агентов. Температурный градиент в ростовой зоне составлял ~45°C/см, скорость опускания тигля - 5 мм/ч. В процессе послеростового охлаждения из ростовой зоны удаляли газообразные фторирующие агенты. Удаление начинали производить в температурном интервале 400-500°C, что определяется температурой начала процесса пирогидролиза (выше 500°C) и кинетикой распада центров окраски (происходит достаточно эффективно при температуре порядка 400°C и выше). Создание неокислительной атмосферы обеспечивали вакуумированием ростовой зоны до остаточного давления не выше 5⋅10-6 мм рт.ст., которое и поддерживали в течение 5 часов. В другом эксперименте после достижения названной величины вакуума в рабочее пространство печи вводили высокочистый инертный газ. В качестве последнего применяли как гелий, так и аргон. При этом поддерживали избыточное давление инертного газа до 800 мм рт. ст. Заполнение рабочего пространства печи инертным газом позволяет прекратить процесс вакуумирования, что снижает энергозатраты, связанные с выращиванием кристаллов. По истечении 5 часов термообработки выращенный кристалл охлаждали со скоростью не более 50°C/ч до комнатной температуры и извлекали его из кристаллизационной установки.
Промышленная применимость способа подтверждена успешными экспериментами по выращиванию кристаллов составов Sr0.7Ce0.3F2.3, Ba0.75Ce0.25F2.25, Ca0.85Ce0.15F2.15, Sr0.35Ba0.35Ce0.30F2.30 и др. Использование заявляемой технологии позволило получить прозрачные в ближней УФ- и видимой областях спектра кристаллы, свободные от загрязнений свинцом, цинком и другими агентами, и избавится от экологически вредных выбросов летучих фторидов. В качестве примера на фиг. 2 приведены спектры пропускания кристаллов Sr0.35Ba0.35Ce0.30F2.30, выращенных с применением термообработки в неокислительной атмосфере и без нее; а на фиг. 3 приведен их внешний вид, где индексом 1 обозначен кристалл, выращенный известным способом, и индексом 2 кристалл, выращенный предлагаемым способом.
название | год | авторы | номер документа |
---|---|---|---|
Способ выращивания кристаллов или получения сплавов флюоритовых твердых растворов ММ'F, где M = Ca, Sr, Ba; M' = Pb, Cd, x - мольная доля летучего компонента M'F (варианты) | 2020 |
|
RU2742638C1 |
ФТОР-ПРОВОДЯЩИЙ КОМПОЗИТНЫЙ ЭЛЕКТРОЛИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2019 |
|
RU2702905C1 |
Способ получения кристаллов дифторида европия (II) EuF | 2016 |
|
RU2627394C1 |
Конгруэнтно плавящийся фтор-проводящий твердый электролит MRF с флюоритовой структурой для высокотемпературных термодинамических исследований | 2016 |
|
RU2639882C1 |
ЛАЗЕРНАЯ ФТОРИДНАЯ КЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2006 |
|
RU2321120C1 |
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ ДЛЯ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ ВЫСОКИХ ЭНЕРГИЙ (ВАРИАНТЫ) | 1992 |
|
RU2056638C1 |
Способ получения люминесцирующего стекла | 2018 |
|
RU2689462C1 |
ФТОР-ПРОВОДЯЩИЙ ТВЕРДЫЙ ЭЛЕКТРОЛИТ RMF С ТИСОНИТОВОЙ СТРУКТУРОЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2557549C1 |
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОЙ КЕРАМИКИ | 2012 |
|
RU2515642C2 |
ПОЛИКРИСТАЛЛИЧЕСКИЙ ЛАЗЕРНЫЙ МАТЕРИАЛ | 2010 |
|
RU2431910C1 |
Изобретение относится к технологии выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, которые широко используются в оптике, фотонике, физике высоких энергий. Способ включает кристаллизацию из расплава шихты, состоящей из смеси фторидов одного или нескольких фторидов щелочноземельных металлов M=Са, Sr, Ва и церия при мольном содержании фторида церия от 0,05 до 50% в атмосфере фторирующих агентов с последующим послеростовым охлаждением до температуры 400-500°С, после достижения этой температуры из ростовой зоны удаляют газообразные фторирующие агенты и ведут термообработку в неокисительной атмосфере при температуре 400-500°С не менее 5 часов, а затем медленно охлаждают кристалл до комнатной температуры. Изобретение направлено на получение кристаллов с высоким оптическим качеством при отсутствии экологически вредных выбросов легколетучих фторидов. 6 з.п. ф-лы, 3 ил., 1 пр.
1. Способ выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, включающий кристаллизацию из расплава шихты, состоящей из фторидов щелочноземельных металлов и церия, в атмосфере фторирующих агентов способом вертикальной направленной кристаллизации с последующим послеростовым охлаждением, отличающийся тем, что в качестве шихты применяют смесь фторидов одного или нескольких щелочноземельных металлов M=Са, Sr, Ва и фторида церия при мольном содержании фторида церия от 0,05 до 50%, процесс послеростового охлаждения ведут до температуры в интервале 400-500°С, после достижения этой температуры из ростовой зоны удаляют газообразные фторирующие агенты и ведут термообработку в неокислительной атмосфере при температуре 400-500°С не менее 5 часов, а затем медленно охлаждают кристалл до комнатной температуры.
2. Способ по п. 1, отличающийся тем, что в качестве способа вертикальной направленной кристаллизации применяют способ Бриджмена-Стокбаргера.
3. Способ по п. 1, отличающийся тем, что неокислительную атмосферу в процессе термообработки создают вакуумированием зоны термообработки до давления не выше 5⋅10-6 мм рт.ст.
4. Способ по п. 3, отличающийся тем, что после создания вакуума в зоне термообработки ее заполняют инертным газом, например аргоном.
5. Способ по п. 1, отличающийся тем, что охлаждение кристалла до комнатной температуры ведут со скоростью не более 50°С/ч.
6. Способ по п. 1, отличающийся тем, что для создания фторирующей атмосферы в шихту вводят политетрафторэтилен, разлагающийся при нагревании с образованием фторирующих газов.
7. Способ по п. 1, отличающийся тем, что для создания фторирующей атмосферы ростовая зона заполняется фторсодержащим газом, например тетрафторметаном, фторидами серы или бора.
КАРИМОВ Д.Н | |||
и др., УСТРАНЕНИЕ ОКРАШИВАНИЯ КРИСТАЛЛОВ Sr 1-x Ce x F 2+x В ВИДИМОМ ДИАПАЗОНЕ СПЕКТРА ПРИ ИХ ВЫРАЩИВАНИИ ИЗ РАСПЛАВА, "КРИСТАЛЛОГРАФИЯ", 2013, том 58, N 5, с | |||
КОННОПРИВОДНОЙ ПОРШНЕВОЙ НАСОС | 1922 |
|
SU744A1 |
KRIVANDINA E.A., PREPARATION OF SINGLE CRYSTALS OF MULTICOMPONENT FLUORIDE MATERIALS WITH THE FLUORITE TYPE STRUCTURE, "Butll | |||
Soc | |||
Cat | |||
Cicn.", 1991, Vol | |||
XII, Num | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
КУЗНЕЦОВ С.В., Синтез монокристаллов и нанопорошков твердых растворов фторидов щелочноземельных и редкоземельных металлов для фотоники | |||
Автореферат диссертации на соискание ученой степени кандидата химических наук, Москва | |||
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек | 1923 |
|
SU2007A1 |
Авторы
Даты
2018-06-29—Публикация
2015-01-21—Подача