Способ определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, и звуколокатор для реализации способа Российский патент 2018 года по МПК G01H5/00 E21B47/00 

Описание патента на изобретение RU2660400C1

Изобретения относятся к подземным хранилищам газа (ПХГ) и могут применяться для определения формы и размеров каверн ПХГ, создаваемых, например, в отложениях каменной соли.

Известны способы того же назначения, заключающиеся в измерении скорости звука С в соленой жидкой среде каверны и облучении ультразвуковыми импульсами стенок каверны звуколокатором под различными азимутальными углами α и наклонными к горизонту углами β на различной высоте h, последующем приеме ультразвуковых импульсов тем же звуколокатором и измерении времени t прохождения импульсами расстояний от звуколокатора до стенок каверны, по которым определяют форму и размеры каверны /Патент Франции №2723783, кл. G01C 7/06, G01D 11/02, Е21В 47/00, G05D 3/12, 1996, Патент США №5767401, кл. 33/312 (Е21В 47/00), 1997/.

Последний из известных способов принят за прототип предлагаемого способа.

Известны звуколокаторы для реализации способа, содержащие цилиндрический корпус, состоящий из трех последовательно установленных частей, причем центральная часть выполнена с возможностью азимутального перемещения относительно неподвижной левой части, а правая часть - с возможностью поворота относительно центральной части на угол 0÷90°, при этом в корпусе установлены блок обработки информации с генератором ультразвуковых импульсов, а также узлы контроля величин азимутального угла α и угла β наклона правой части относительно центральной, а также высоты h положения звуколокатора, выходы которого подключены к блоку обработки, причем на боковой поверхности поворотной правой части корпуса установлены первый основной приемно-передающий ультразвуковой преобразователь, соединенный с генератором ультразвуковых импульсов и входом блока обработки, а на торцевой свободной части корпуса установлен донный приемопередающий преобразователь, соединенный с генератором ультразвуковых импульсов и блоком обработки информации /Патент Франции №2723783, кл. G01C 7/06, G01D 11/02, Е21В 47/00, G05D 3/12, 1996; Патент США №5767401, кл. 33/312 (Е21В 47/00), 1997/.

Последний из патентов принят за прототип звуколокатора.

Недостатками прототипов способа и звуколокатора являются погрешности определения формы и размеров каверны ПХГ с помощью звуколокатора из-за наличия стратификации по глубине соленой жидкости, заполняющей каверну, и связанные с этим изменения скорости звука по глубине каверны.

Измерения усложняются тем, что скорость звука при наклонном лоцировании каверны (при β≠0), изменяется по направлению лоцирования.

Известный локатор имеет дополнительный недостаток, связанный с тем, что приемно-передающий ультразвуковой преобразователь расположен на поворотной части корпуса звуколокатора только с одной боковой стороны. Это позволяет звуколокатору пролоцировать за один каротажный проход при наклонном лоцировании только верхнюю или нижнюю части каверны. Если необходима информация о верхней и нижней частях каверны при наклонных лоцированиях, то требуется замена наклонной части корпуса на другую часть с расположением ультразвуковых преобразователей, смещенных на 180° от предыдущих, и требуется проведение повторного каротажа.

Техническим результатом, получаемым от внедрения изобретений, является устранение перечисленных недостатков способа и звуколокатора, т.е. повышение достоверности исследований за счет измерения скорости звука в процессе лоцирования и сокращения времени проведения каротажных работ.

Данный технический результат в части способа достигается за счет того, что в известном способе определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, заключающемся в измерении скорости С звука в соленой жидкой среде каверны и облучении ультразвуковыми импульсами стенок каверны звуколокатором под различными азимутальными α и наклонными к горизонту углами β на различной высоте h, последующем приеме ультразвуковых импульсов тем же звуколокатором и измерении времен t прохождения импульсами расстояний от звуколокатора до стенок каверны, по которым определяют форму и размеры каверны, скорости C1, С2…CN звука в соленой жидкой среде измеряют непосредственно в моменты измерений времен t1, t2…tN в горизонтальных плоскостях при различных значениях h и α, а затем перед измерениями времен t для наклонных к горизонту плоскостей аналитически определяют средние скорости Сβ для каждого наклонного к горизонту плоскостей направления под углом β при различных значениях азимутальных углов α и высот h.

Данный технический результат в части звуколокатора достигается тем, что известный звуколокатор для реализации способа, содержащий узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей, причем центральная часть выполнена с возможностью азимутального перемещения относительно неподвижной левой части, а правая часть - с возможностью поворота относительно центральной части на угол 0÷90°, при этом в корпусе установлены блок обработки информации с генератором ультразвуковых импульсов, а также узлы контроля величин азимутального угла α и угла β, выходы которых подключены к блоку обработки, причем на боковой поверхности поворотной правой части корпуса установлены первый основной приемно-передающий ультразвуковой преобразователь, соединенный с генератором ультразвуковых импульсов и с входом блока обработки, а на торцевой свободной части корпуса установлен донный приемно-передающий преобразователь, соединенный с генератором ультразвуковых импульсов и блоком обработки информации, содержит пару передающего и приемного преобразователей, установленных на известном расстоянии друг от друга по высоте на уровне основного приемно-передающего преобразователя, и второй основной приемно-передающий ультразвуковой преобразователь, установленный на боковой поверхности поворотной правой части корпуса напротив первого основного преобразователя и электрически соединенный с блоком обработки информации и генератором ультразвуковых импульсов.

Звуколокатор дополнительно содержит датчики температуры и давления, расположенные внутри корпуса.

В звуколокаторе узел контроля величины азимутального угла α и поворотного угла β выполнен на основе трехосевого магнитометра и акселерометра.

Изобретения поясняются чертежами.

На фиг. 1 представлена схема реализации способа; на фиг. 2 - поворотная часть звуколокатора с ультразвуковыми преобразователями; на фиг. 3 - общий вид звуколокатора; на фиг. 4 - временные диаграммы, получаемые с помощью звуколокатора на различной глубине каверны ПХГ.

Звуколокатор (фиг. 1, 2, 3) для реализации способа содержит цилиндрический корпус 1, состоящий из трех последовательно установленных частей: левой, центральной и правой (звуколокатор в формуле изобретения описан в горизонтальном положении, в статике).

Левая часть 2 - неподвижная, центральная 3 - вращающаяся в азимутальной плоскости; правая 4 - поворотная по зенитному углу β=0÷90°.

Центральная часть 3 приводится во вращение вокруг оси 5 управляемым двигателем (на чертежах не показан), расположенным в цилиндрическом корпусе 1.

Правая часть 4 поворачивается вокруг цилиндрического шарнира 6 с помощью управляемого двигателя (на чертежах не показан), установленного в корпусе 1.

В корпусе 1, как в прототипе, установлены узлы контроля величин углов α и β. Узлы контроля могут быть выполнены на основе трехосного магнитометра и акселерометра, выходы которых подключены к блоку обработки (на чертежах не показаны).

Поворотная правая часть 4 корпуса 1 (фиг. 1, 2) содержит два приемно-передающих ультразвуковых преобразователя (оцифрованные под позициями 7, 8).

В боковой поверхности поворотной части 4 могут быть выполнены окна 9, 10 (фиг. 3) через которые ведутся излучение и прием ультразвуковых импульсов при работе звуколокатора.

Преобразователи 7, 8 установлены на поворотной части 4 под углом 180°.

Имеется также приемно-передающий донный ультразвуковой преобразователь 11, установленный на торцевой части корпуса 1 (поворотной части 4).

Внутри или снаружи поворотной части 4 корпуса 1 расположены пара передающего и приемного преобразователей 12, 13, закрепленных на известном расстоянии х друг от друга напротив преобразователей 7, 8 (фиг. 2), учитывая, что х<<h.

Все приемно-передающие ультразвуковые преобразователи 7, 8, 12, 13 подключены к генератору ультразвуковых импульсов и к блоку обработки информации (генератор и блок обработки на чертежах не показаны).

Звуколокатор также содержит измеритель глубины h расположения звуколокатора в каверне 14 (фиг. 1) и датчики температуры TN, давления и солености SN жидкости, заполняющей каверну 14 ПХГ (на чертежах не показаны). Датчик солености SN жидкости может быть выполнен в виде датчика электропроводности и служит для определения закона стратификации соленой жидкости по высоте h.

Способ реализуется следующим образом.

Звуколокатор опускается в исследуемую каверну 14 ПХГ через скважину 15 при угле β=180° (фиг. 1а).

Включаются приемно-передающие ультразвуковой преобразователь с одной стороны цилиндрического корпуса 1 (например 7) и пара ультразвуковых преобразователей 12, 13 с донным приемно-передающим преобразователем 11 (фиг. 1а).

На каждом уровне на высотах h1, h2…hN (фиг. 1в) измеряются времена t1, t2…tN прохождения ультразвуковой волной 16 двойного расстояния ll, l2…lN от преобразователя 7 до стенки 17 каверны и обратно до преобразователя 7 (фиг. 1, 2).

Одновременно на уровнях h1, h2…hN измеряются скорости звука C1, С2…CN с помощью пары преобразователей 12, 13, расположенных на расстоянии х в подвижной части 4 корпуса 1.

Блок обработки информации определяет расстояние для различных азимутальных углов α и высот h.

С помощью приемно-передающего преобразователя 11, излучающего и принимающего отраженный от дна 18 каверны 17 ультразвуковой импульс 19, контролируется расстояние от торца звуколокатора до дна 18 каверны 17 (фиг. 1, 2).

Измеренные значения времен t1, t2…tN для различных высот h1, h2…hN, регистрируются (фиг. 4) и заполняются в блоке обработки.

При достижении заданного расстояния до дна 18 каверны 17 звуколокатор останавливается для отклонения поворотной части 4 в пределах угла β и лоцирования донной области каверны, например, с помощью преобразователя 8 (фиг. 1, 2).

Одновременно с донной областью (или последовательно) с помощью преобразователей 7, 8 можно проводить лоцирование боковых стенок каверны 17 под различными углами α и β (фиг. 1б).

При этом для каждого наклонного к горизонту направления β определяют средние скорости Сβ по ранее полученным значениям C1, С2…CN скоростей звука для различных h. И по измеренному времени распространения ультразвукового импульса определяют наклонное расстояние до стенки каверны.

Купольную часть 20 каверны 17 (фиг. 1в) аналогично исследуют с помощью преобразователя 7, во время проведения тех же каротажных исследований в отличие от прототипа, в котором для подобных исследований требуется замена поворотной части 4 звуколокатора и проведение повторного каротажа ПХГ.

Таким образом, применение данных способа и звуколокатора повышает достоверность исследований формы и размеров каверны ПХГ за счет определения скорости звука в различных направлениях при проведении акустических измерений в процессе одного каротажного исследования, чем достигается поставленный технический результат.

Похожие патенты RU2660400C1

название год авторы номер документа
Способ исследования геометрических параметров каверны подземного хранилища газа 2017
  • Егурцов Сергей Алексеевич
  • Иванов Юрий Владимирович
  • Скрынник Татьяна Владимировна
  • Горяев Юрий Анатольевич
  • Зубарев Алексей Павлович
  • Королев Александр Евгеньевич
  • Божедомов Вячеслав Георгиевич
  • Селезнев Дмитрий Владимирович
RU2660307C1
ПОДВОДНЫЙ ЗОНД 2008
  • Румянцев Юрий Владимирович
  • Парамонов Александр Александрович
  • Аносов Виктор Сергеевич
  • Чернявец Владимир Васильевич
  • Жильцов Николай Николаевич
RU2365940C1
СПОСОБ ГИДРОМЕТЕОРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ ЗА АКВАТОРИЕЙ МОРСКОГО ПОЛИГОНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Румянцев Юрий Владимирович
  • Парамонов Александр Александрович
  • Аносов Виктор Сергеевич
  • Чернявец Владимир Васильевич
  • Жильцов Николай Николаевич
  • Дружевский Сергей Анатольевич
  • Федоров Александр Анатольевич
RU2376612C1
ПОДВОДНЫЙ ЗОНД 2008
  • Румянцев Юрий Владимирович
  • Парамонов Александр Александрович
  • Аносов Виктор Сергеевич
  • Чернявец Владимир Васильевич
  • Жильцов Николай Николаевич
RU2370787C1
СПОСОБ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Алексеев Сергей Петрович
  • Курсин Сергей Борисович
  • Добротворский Александр Николаевич
  • Ставров Константин Георгиевич
  • Гусева Валентина Ивановна
  • Костенич Александр Валерьевич
  • Сувернев Владимир Евгеньевич
  • Пушкина Людмила Федоровна
  • Денесюк Евгений Андреевич
  • Чернявец Владимир Васильевич
  • Румянцев Юрий Владимирович
RU2439614C2
Скважинный звуколокатор 1976
  • Пузырев Павел Федотович
  • Тизяев Геннадий Алексеевич
  • Мясковская Инна Давыдовна
  • Широченский Сергей Иванович
  • Чигиринский Рэм Элисович
SU693305A1
УЛЬТРАЗВУКОВОЙ РАСХОДОМЕР-СЧЕТЧИК ОБЪЕМНОГО РАСХОДА И ОБЪЕМА ПОТОКОВ ТЕКУЧИХ СРЕД 2024
  • Петров Владимир Владимирович
  • Петров Арсений Владимирович
RU2825979C2
Скважинный гидролокатор 1990
  • Широченский Сергей Иванович
  • Похвалиев Сергей Михайлович
  • Андрианов Владимир Рубенович
  • Петров Александр Петрович
SU1796014A3
МНОГОЧАСТОТНЫЙ ГИДРОЛОКАТОР БОКОВОГО ОБЗОРА 2017
  • Волощенко Вадим Юрьевич
  • Тарасов Сергей Павлович
  • Плешков Антон Юрьевич
  • Воронин Василий Алексеевич
  • Пивнев Петр Петрович
  • Волощенко Александр Петрович
RU2689998C1
УСТРОЙСТВО ГИДРОМЕТЕОРОЛОГИЧЕСКИХ НАБЛЮДЕНИЙ ЗА АКВАТОРИЕЙ МОРСКОГО ПОЛИГОНА 2008
  • Аносов Виктор Сергеевич
  • Румянцев Юрий Владимирович
  • Парамонов Александр Александрович
  • Чернявец Владимир Васильевич
  • Федоров Александр Анатольевич
RU2376653C1

Иллюстрации к изобретению RU 2 660 400 C1

Реферат патента 2018 года Способ определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, и звуколокатор для реализации способа

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей. Центральная часть выполнена с возможностью азимутального перемещения относительно неподвижной левой части, а правая часть - с возможностью поворота относительно центральной части на угол 0÷90°. В корпусе установлены блок обработки информации с генератором ультразвуковых импульсов, а также узлы контроля величин азимутального угла α и угла β наклона правой части относительно центральной. На боковой поверхности поворотной правой части корпуса установлен первый основной приемно-передающий ультразвуковой преобразователь, а на торцевой свободной части корпуса установлен донный приемно-передающий преобразователь. Также содержит пару передающего и приемного преобразователей, установленных на уровне основного приемно-передающего преобразователя, и второй основной приемно-передающий ультразвуковой преобразователь, установленный на боковой поверхности поворотной правой части корпуса напротив первого основного приемно-передающего преобразователя. Технический результат – повышение точности измерений. 2 н. и 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 660 400 C1

1. Способ определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, заключающийся в измерении скорости С звука в соленой жидкой среде каверны и облучении ультразвуковыми импульсами стенок каверны звуколокатором под различными азимутальными углами α и наклонными к горизонту углами β на различной высоте h, последующем приеме ультразвуковых импульсов тем же звуколокатором и измерении времен t прохождения импульсами расстояний от звуколокатора до стенок каверны, по которым определяют форму и размеры каверны, отличающийся тем, что скорости C1, C2 … CN звука в соленой жидкой среде измеряют непосредственно в моменты измерений времен t1, t2 … tN в горизонтальных плоскостях при различных значениях h и α, а затем перед измерениями времен t для наклонных к горизонту плоскостей аналитически определяют средние скорости Сβ для каждого наклонного к горизонту направления под углом β при различных значениях азимутальных углов α и высот h.

2. Звуколокатор для реализации способа, содержащий узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей, причем центральная часть выполнена с возможностью азимутального перемещения относительно неподвижной левой части, а правая часть - с возможностью поворота относительно центральной части на угол 0÷90°, при этом в корпусе установлены блок обработки информации с генератором ультразвуковых импульсов, а также узлы контроля величин азимутального угла α и угла β наклона правой части относительно центральной, выходы которых подключены к блоку обработки, причем на боковой поверхности поворотной правой части корпуса установлен первый основной приемно-передающий ультразвуковой преобразователь, соединенный с генератором ультразвуковых импульсов и входом блока обработки, а на торцевой свободной части корпуса установлен донный приемно-передающий преобразователь, соединенный с генератором ультразвуковых импульсов и блоком обработки информации, отличающийся тем, что содержит пару передающего и приемного преобразователей, установленных на известном расстоянии друг от друга по высоте на уровне основного приемно-передающего преобразователя, и второй основной приемно-передающий ультразвуковой преобразователь, установленный на боковой поверхности поворотной правой части корпуса напротив первого основного приемно-передающего преобразователя, электрически соединенный с блоком обработки информации и генератором ультразвуковых импульсов.

3. Звуколокатор по п. 2, отличающийся тем, что дополнительно содержит датчики температуры и давления, расположенные внутри корпуса.

4. Звуколокатор по п. 2, отличающийся тем, что узлы контроля величины азимутального угла α и поворотного угла β выполнен на основе трехосевого магнитометра и акселерометра.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660400C1

US 5767401 A, 16.06.1998
0
  • П. Ф. Пузырев, А. Герасимов, Р. Э. Чигиринский П. Чепурнов
SU234685A1
Акустический профилемер подземных полостей, заполненных жидкостью 1989
  • Гуцалюк Владимир Михайлович
  • Сакун Владимир Александрович
  • Кролик Владимир Федорович
  • Пекарь Николай Николаевич
SU1786458A1
Способ акустической профилеметрии скважин 1980
  • Ишмухаметов Алик Усманович
  • Жувагин Иван Герасимович
  • Красильников Александр Андреевич
  • Стрелков Вячеслав Иванович
  • Гумеров Радиф Галиевич
  • Шершнев Валерий Васильевич
  • Шутемов Аркадий Иванович
SU987548A1
Скважинный гидролокатор 1990
  • Широченский Сергей Иванович
  • Похвалиев Сергей Михайлович
  • Андрианов Владимир Рубенович
  • Петров Александр Петрович
SU1796014A3
Способ акустической локации стенок скважины 1991
  • Тизяев Геннадий Алексеевич
  • Чеканов Сергей Алексеевич
  • Осадчий Андрей Петрович
  • Кузнецов Олег Леонидович
SU1824610A1
Ультразвуковой скважинный гидролокатор 1977
  • Антипов Альберт Тимофеевич
SU720389A1
Способ получения коричневых красителей акридинового ряда 1926
  • Порай-Кошиц А.Е.
SU31074A1
US 4766577 A1, 23.08.1988
US 8408355 B2, 02.04.2013
US 3286163 A1, 15.11.1966
US 3517768 A, 30.06.1970
US 4381787 A1, 03.05.1983.

RU 2 660 400 C1

Авторы

Егурцов Сергей Алексеевич

Иванов Юрий Владимирович

Скрынник Татьяна Владимировна

Горяев Юрий Анатольевич

Зубарев Алексей Павлович

Королев Александр Евгеньевич

Божедомов Вячеслав Георгиевич

Селезнев Дмитрий Владимирович

Даты

2018-07-06Публикация

2017-07-13Подача