Способ построения радиолокационного изображения с помощью радиолокационной станции с синтезированной апертурой Российский патент 2018 года по МПК G01S13/90 

Описание патента на изобретение RU2661941C1

Изобретение относится к способам построения радиолокационных изображений (РЛИ) земной поверхности при дистанционном зондировании земли (ДЗЗ) с помощью радиолокационной станции с синтезированной апертурой (РСА).

Известны способы, в которых при обработке данных РСА применяются аппроксимации для ограничения необходимого количества вычислений. Алгоритмы построения РЛИ основаны на свертках с опорной функцией для получения фокусированного изображения. Свертки обычно реализуются с использованием прямого и обратного быстрого преобразования Фурье (БПФ). Быстрая свертка требует, чтобы входные данные и точки изображения регулярно распределялись по прямоугольным сеткам. В этом случае основные стадии свертки вынужденно сопровождаются дополнительными этапами компенсации движения и миграции дальности. Кроме того, применяемые аппроксимации ухудшают точность результатов.

В настоящее время особый интерес представляют небольшие тактические беспилотные летательные аппараты (БПЛА), оснащенные РСА. Использование БПЛА в качестве платформы накладывает существенные ограничения на РСА по весу и объему. Ввиду относительно малого размера БПЛА подвержены ветровому воздействию, что негативно сказывается на курсовой устойчивости и, соответственно приводит к некогерентному накоплению эхо-сигналов.

Известны способы [например, патент RU 2614041 от 22.03.2017], использующие некогерентное суммирование парциальных кадров РЛИ с переходом в земную систему координат.

Также известен способ, в котором при обработке сигнала производят сдвиг сигнала в каждом канале дальности по частоте таким образом, что доплеровская частота сигналов, отраженных от элементов, находящихся на оси пятна луча диаграммы направленности антенны на картографируемой поверхности, принимает нулевое значение, а при формировании РЛИ производят пересчет элементов разрешения по доплеровской частоте в каждом канале дальности в азимутальные элементы разрешения в соответствии с зависимостью азимута от доплеровской частоты и дальности, обратной использованной при частотном сдвиге сигнала [патент RU 2617116 от 21.04.2017].

Наиболее близким к изобретению является способ, описанный в заявке на патент RU 2271019 от 27.02.2006 - прототип. Изобретение относится к радиолокационным системам и предназначено для использования в качестве вертолетной или самолетной БРЛС для обзора земной или водной поверхности и обнаружения на ней объектов в режимах радиолокационного картографирования. Техническим результатом является снижение ошибок измерения ускорения, приводящее к существенному повышению характеристик радиолокационного изображения (разрешение, контрастность, динамический диапазон и др.). Для компенсации фазовых набегов при синтезировании используется информация о параметрах движения антенны, полученная инерциальной навигационной системой и датчиками линейных ускорений, при этом применяется процедура обработки сигналов отражений от наземных объектов, при которой величина фазовых набегов за счет ошибок измерения датчиками доводится до допустимой величины, определяемой заданным критерием качества радиолокационной информации.

Недостатками известного способа является то, что он требует отдельной компенсации движения и мер для компенсации миграции дальности в частотной области, что сопряжено с увеличением вычислительной нагрузки и невозможностью естественно использовать распараллеливание алгоритма на многопоточных вычислителях.

Целью настоящего изобретения является повышение качества РЛИ в сравнении с традиционными способами, использующими обработку данных в частотной области, а также адаптация алгоритма построения РЛИ для реализации на многопоточных вычислителях.

Указанная цель достигается за счет того, что для построения радиолокационного изображения используются вычисления на основе фактической геометрии с применением вычислительно эффективной свертки со знаковой опорной функцией во временной области.

Настоящий способ предполагает вычисления на основе фактической геометрии радиолокационной сцены и, следовательно, не требует отдельной компенсации движения или мер для компенсации миграции дальности. Способ требует большого количества вычислений, но очень точен, если геометрия точно известна. Обработка во временной области позволяет предложить оптимизацию, которая частично компенсирует неэффективность алгоритма. Оптимизация выполняется путем распараллеливания обработки, а также бинаризации опорной функции свертки. Отсутствие дополнительных предположений о траектории движения носителя делает настоящий способ пригодным для широкого диапазона приложений при использовании одинаковых базовых вычислений. Это позволяет использовать одно и то же ядро обработки для разных режимов работы РСА.

Построение изображения рассматривается как процесс когерентного добавления нескольких наблюдений определенного места в мировых координатах для получения значения, определяющего отражательную способность пятна. Радиолокационное наблюдение s[r] определяется как массив сжатых комплексных откликов, индексированных диапазоном r. Также определяется соотнесенная по времени с каждым наблюдением трехмерная позиция антенны . Все наблюдения (т.е. импульсы) и положения антенн индексируются и формируют последовательность наблюдений sk[r], соответствующие положениям антенн . Учитывая позицию, в которой необходимо оценить значение отражения , возможно определить одностороннее расстояние между этим конкретным положением в заданных координатах и позицией антенны

где оператор |⋅| обозначает вторую норму (т.е. евклидово расстояние). Учитывая одностороннее расстояние, сдвиг фазы можно вычислить как

где λ - длина излучаемой радиолокационной волны. Фазовращатель, соответствующий этому фазовому сдвигу, задается формулой

Частичный вклад каждого радиолокационного наблюдения в реконструкцию значения определяется принятым отражением на расстоянии rk, сдвинутым по ожидаемой фазе:

Здесь оператор "*" обозначает комплексное сопряжение. Одной из предлагаемых оптимизаций вычисления данной временной свертки является использование знаковой опорной функции:

Бинаризация опорной функции применительно к настоящему алгоритму обработки во временной области приводит к значительному упрощению вычислений на параллельных процессорах, т.к. избавляет от необходимости использования мультипликационных операций. Произведение сигнала и знаковой опорной функции сводится к знаковому сложению комплексных отсчетов.

Предполагая, что радиолокационные отражения складываются когерентно для интересующего пункта, значения отражающей способности в желаемых координатных позициях W могут быть восстановлены как

где - множество индексов всех соответствующих радиолокационных наблюдений (или положений антенн) для значения .

Используя очень простой алгоритм, основанный на свертках во временной области, можно выполнить построение радиолокационных изображений РСА в реальном времени. Настоящий способ является простым в реализации и использовании, точным и универсальным. Хотя настоящий способ требует гораздо больших вычислений, чем многие известные подходы, но благодаря распараллеливанию вычислений и бинаризации опорной функции свертки во временной области он может быть реализован в режиме реального времени на общедоступном оборудовании.

Похожие патенты RU2661941C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ 2014
  • Лихачев Владимир Павлович
  • Купряшкин Иван Федорович
  • Рязанцев Леонид Борисович
  • Трущинский Алексей Юрьевич
RU2578126C1
УСТРОЙСТВО РАДИОЛОКАЦИОННОЙ СТАНЦИИ С НЕПРЕРЫВНЫМ ЛИНЕЙНО-ЧАСТОТНО-МОДУЛИРОВАННЫМ СИГНАЛОМ И СИНТЕЗОМ АПЕРТУРЫ 2017
  • Кочнев Павел Эдуардович
  • Антонов Сергей Леонидович
  • Колтышев Евгений Евгеньевич
  • Янковский Владимир Тадэушевич
  • Фролов Алексей Юрьевич
  • Антипов Владимир Никитич
  • Валов Сергей Вениаминович
  • Мухин Владимир Витальевич
RU2660450C1
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ В РЛС С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ С ПРЕДВАРИТЕЛЬНОЙ ФОКУСИРОВКОЙ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ 2021
  • Буслаев Алексей Борисович
  • Гуляев Григорий Анатольевич
  • Иванников Кирилл Сергеевич
  • Иванникова Мария Владимировна
  • Муравьев Никита Павлович
  • Рязанцев Леонид Борисович
RU2792964C2
СПОСОБ НАВИГАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ПО РАДИОЛОКАЦИОННЫМ ИЗОБРАЖЕНИЯМ ЗЕМНОЙ ПОВЕРХНОСТИ 2011
  • Анцев Георгий Владимирович
  • Соловьев Геннадий Алексеевич
  • Зверев Владимир Леонидович
  • Чугунова Вера Алексеевна
RU2483324C1
СПОСОБ НАВИГАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ПО РАДИОЛОКАЦИОННЫМ ИЗОБРАЖЕНИЯМ ЗЕМНОЙ ПОВЕРХНОСТИ 2014
  • Соловьев Геннадий Алексеевич
  • Чугунова Вера Алексеевна
RU2564552C1
СПОСОБ ФОРМИРОВАНИЯ ДЕТАЛЬНЫХ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ В РЛС С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ 2018
  • Дробот Игорь Сергеевич
  • Рязанцев Леонид Борисович
  • Купряшкин Иван Федорович
  • Лихачев Владимир Павлович
  • Коков Ренат Русланович
  • Гареев Марат Шамилевич
RU2710961C1
Способ оптимального восстановления изображений в радиолокационных системах дистанционного зондирования Земли 2016
  • Коренной Александр Владимирович
  • Лепешкин Сергей Анатольевич
  • Кадочников Андрей Павлович
RU2624460C1
Способ определения высоты рельефа местности радиолокатором с синтезированной апертурой антенны 2019
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
  • Лавренюк Дмитрий Сергеевич
RU2707556C1
СПОСОБ ВЫБОРА ОПТИМАЛЬНОЙ ПРОДОЛЖИТЕЛЬНОСТИ ИНТЕРВАЛА СИНТЕЗИРОВАНИЯ В РАДИОЛОКАЦИОННОЙ СТАНЦИИ С ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ АНТЕННЫ 2008
  • Сахаров Сергей Васильевич
  • Ярушкин Михаил Михайлович
RU2378662C1
Способ радиолокационной съёмки Земли и околоземного пространства радиолокатором с синтезированной апертурой антенны в неоднозначной по дальности полосе с селекцией движущихся целей на фоне отражений от подстилающей поверхности и радиолокатор с синтезированной апертурой антенны для его реализации 2019
  • Сонин Александр Петрович
RU2740782C1

Реферат патента 2018 года Способ построения радиолокационного изображения с помощью радиолокационной станции с синтезированной апертурой

Настоящее изобретение относится к способам построения радиолокационных изображений (РЛИ) подстилающей поверхности в ходе дистанционного зондирования земли (ДЗЗ) с помощью радаров с синтезированной апертурой (РСА). Достигаемый технический результат - повышение качества РЛИ в сравнении с традиционными способами, использующими обработку данных в частотной области, а также адаптация алгоритма построения РЛИ к эффективной реализации на многопоточных вычислителях. Указанный результат достигается за счет того, что в способе осуществляют когерентное суммирование эхо-сигналов с учетом реальной геометрии сцены и платформы-носителя, при этом независимо учитывается результат каждого радиолокационного наблюдения с корректировкой фазового сдвига в реконструкцию элементов сцены. Способ не требует отдельной компенсации движения или мер для компенсации миграции дальности. Обработка входных сигналов во временной области позволяет обеспечить оптимизацию вычислений при построении РЛИ. Оптимизация выполняется путем распараллеливания обработки, а также бинаризации опорной функции свертки.

Формула изобретения RU 2 661 941 C1

Способ построения радиолокационного изображения с помощью радиолокационной станции с синтезированной апертурой, преобразующий входной комплексный сигнал, включающий коррекцию миграции дальности в РЛИ, отличающийся тем, что в когерентном суммировании эхо-сигналов с учетом реальной геометрии сцены и платформы-носителя независимо учитывается вклад каждого радиолокационного наблюдения с корректировкой фазового сдвига в реконструкцию элементов сцены, а для оптимизации вычислений используется распараллеливание обработки отдельных элементов сцены и бинаризация опорной функции временной свертки.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661941C1

СПОСОБ КОМПЕНСАЦИИ ФАЗОВЫХ НАБЕГОВ СИГНАЛА В БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СИСТЕМЕ И БОРТОВАЯ РАДИОЛОКАЦИОННАЯ СИСТЕМА С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ ДЛЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2004
  • Артемьев Александр Иванович
  • Рогов Вячеслав Яковлевич
  • Суслов Леонид Леонидович
RU2271019C1
Способ формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны 2016
  • Купряшкин Иван Федорович
  • Лихачев Владимир Павлович
  • Рязанцев Леонид Борисович
  • Яковенков Валентин Валентинович
RU2632898C1
RU 25111216 C1, 10.04.2014
US 20160313440 A1, 27.10.2016
СПОСОБ РАННЕГО ОПРЕДЕЛЕНИЯ ПОЛА БУДУЩЕГО РЕБЕНКА 2006
  • Лактионов Павел Петрович
  • Вайнер Ольга Борисовна
  • Катохин Алексей Вадимович
  • Осетрова Ольга Юрьевна
  • Власов Валентин Викторович
RU2317334C1
WO 2000023818 A1, 27.04.2000
US 7196653 B2, 27.03.2007.

RU 2 661 941 C1

Авторы

Бокучава Пётр Нугзариевич

Гладуш Андрей Игоревич

Кочубей Даниил Русланович

Осадчий Александр Иванович

Славянский Олег Евгеньевич

Щесняк Сергей Степанович

Даты

2018-07-23Публикация

2017-12-14Подача