Изобретение относится к технологии получения стабильных дисперсий углеродных наноматериалов в термореактивных олигомеризованных цианат-эфирах без использования растворителей для их последующего отверждения в виде пластика или армированного пластика. Более конкретно: изобретение относится технологии одновременной олигомеризации цианат-эфирного мономера и ультразвуковой диспергации углеродных нанотрубок и дисперганта на основе сульфонилбисцианатофенилизоиндолиндиона in situ.
Цианат-эфирные связующие имеют ряд ключевых преимуществ и особенностей, которые делают их исключительно важными в космическом аппаратостроении. Именно уникальная химическая структура скелета формирующейся пространственной трехмерной сетки макромолекулы полимера является ключевой основой для проявляемых важных физико-химических и термомеханических свойств, таких как: низкая диэлектрическая проницаемость, высокая термо- и трещиностойкость, сверхнизкая влагопоглощаемость. [Reghunadhan Nair С.P., Mathew D., Ninari К.N., Cyanate Ester Resins, Recent Developments, Advances in Polymer Science. Vol. 155, 2001. P. 84-87], [Hamerton I. Chemistry and technology of cyanate ester resins, Springer, 1994. Pp. 30-31, 116-117, 241-245]
Одностенные углеродные нанотрубки (УНТ) являются фактически скрученным в цилиндр листом графена. Их уникальная особенность строения и квантоворазмерные эффекты позволяют им обладать рядом уникальных свойств. Они обладают высокой теплопроводностью сравнимой с алмазом, сверх-низким коэффициентом линейного термического расширения, высоким модулем упругости и высокой прочностью. Высокие электропроводящие и теплопроводящие свойства УНТ хорошо известны. [Prabhakar R. Bandaru, Electrical Properties and Applications of Carbon Nanotube Structures. Journal of Nanoscience and Nanotechnology Vol. 7, 1-29, 2007].
Известен способ диспергирования наноразмерных объектов в связующих с использованием высококипящих растворителей (N-метилпирролидон (НМП), диметилформамид (ДМФА), диметилсульфоксид (ДМСО) [Kevin D. Ausman, Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes, J. Phys. Chem. B, 2000, 104 (38), pp 8911-8915]. Этот метод предполагает огромные технологические трудности, а также экономические затраты. При работе с высоковязкими связующими полностью отогнать растворитель даже из тонких пленок не удается. Адсорбируясь на поверхности нанотрубок, растворитель ухудшает основные свойства нанокомпозита (диэлектрические, физико-механические, газовыделение и т.д.). В случае деталей космических аппаратов это приведет к десорбции растворителя и последующей усадке и короблению всей конструкции. Что в свою очередь может привести к ухудшению диэлектрических свойств изделия и потере качества сигнала. К тому же, работа с подобными растворителями вредна с точки зрения экологии.
Также известен способ изготовления полимерных нанокомпозитов на реактопластичном связующем для космических, авиационных, строительных и других конструкций (стеклопластиков, углепластиков, органопластиков и др.) с применением УНТ, введеных в связующее с помощью ультразвукового воздействия. Данный способ описан в патенте RU 2497843 от 29.12.2011 и является наиболее близким.
Предлагаемый способ получения нанокомпозиционных связующих без применения растворителей позволяет использовать УНТ различных аллотропных конфигураций и связующие на основе цианат-эфиров для создания материалов с особыми свойствами: пластиков и армированных пластиков для космических, авиационных, строительных и других конструкций.
Например: диспергант на основе сульфонилбисцианатофенилизоиндолиндиона и мономер бисфенола А дицианата вместе с УНТ обрабатываются ультразвуком при повышенной температуре (150°С). УНТ диспергируются с помощью ультразвукового излучателя и дисперганта в расплаве олигомеризующегося мономера in situ, а не вмешиваются в олигомер с использованием растворителей. Одновременный рост тримеризационных цепей олигомера и диспергация УНТ позволяет получить стабильный нанокомпозиционный олигомер. Нанообъекты, диспергант и матрица создают единую структуру и однородную топологию, в результате которой УНТ не агрегируются и не осаждаются со временем.
Синтез π-π дисперганта для получения качественной дисперсии углеродных нанотрубок и последующей их связи с цианат-эфирной матрицей
На основании проведенных квантово-механических расчетов с помощью программы Materials Studio 8 величины адсорбции дисперганта к поверхности одностенной УНТ были выбраны для синтеза следующие дисперганты: полиимид бисфенола А диакрилат (ПИБАД, иностранный аналог) [Магу В. Chan-Park, Use of Polyimide-graft-Bisphenol A Diglyceryl Acrylate as a Reactive Noncovalent Dispersant of Single-Walled Carbon Nanotubes for Reinforcement of Cyanate Ester/Epoxy Composite, Chem. Mater. 2010, 22, 6542-6554] и сульфонилбисцианатофенилизоиндолиндион (СБЦФИИ, патентуемое вещество). Адгезия СБЦФИИ к одностенной углеродной нанотрубке (ОСУНТ) в результате расчетов оказалась выше, чем у ПИБАД (табл. 1). После этого были изучены характеристики нанокомпозитов и углепластиков, полученных на их основе. Схемы синтеза диспергентов указаны на фигуре 1 и 2.
Было замечено что диспергант на основе СБЦФИИ растворяется в мономере и олигомере бисфенола А дицианата полностью, в отличие от ПИБАД. Полученные дисперсии ОСУНТ обладают хорошей дисперсностью (благодаря высокой совместимости с матрицей) и не седементируются. ОСУНТ формируют топологию образующейся полимерной матрицы и связаны с ней благодаря цианатным группам адсорбированного дисперганта. А с помощью π-π взаимодействий осуществляется связь между имидными фрагментами дисперганта и поверхностью ОСУНТ. Возможно дополнительное увеличение адгезии дисперганта к наноматериалу, варьируя имидный фрагмент при его синтезе.
Пример №1
1-я стадия. Смешение порошков дисперганта СБЦФИИ (1% вес.), углеродных нанотрубок (одностенные углеродные нанотрубки с гидроксильными группами) (1% вес.) и мономера цианат-эфира (бисфенол А дицианат) (98% вес.) при комнатной температуре.
2-я стадия. Механическое измельчение порошков при комнатной температуре.
3-я стадия. Нагрев для получения расплава мономера при Т=80°С
(Скорость нагрева не более 5°С/мин).
4-я стадия. Ультразвуковое (УЗ) диспергирование.
5-ая стадия. Нагрев до 150°С.
Пример №2 (иностранный аналог для сравнения)
1-я стадия. Смешение порошков дисперганта ПИБАД (1% вес.), углеродных нанотрубок (одностенные углеродные нанотрубки с гидроксильными группами) (1% вес.) и мономера цианат-эфира (бисфенол А дицианат) (98% вес.).
2-я стадия. Механическое измельчение порошков.
3-я стадия. Нагрев для получения расплава мономера при Т=80°С (Скорость нагрева не более 5°С/мин)
4-я стадия. УЗ диспергирование.
5-я стадия. Нагрев до 150°С.
Получение пленок модифицированного цианат-эфирного связующего для производства препрега.
При откатке пленок для производства препрега на основе высокомодульного волокна и нанокомпозиционных связующих, содержащих ОСУНТ, диспергированных с использованием различных диспергантов, оказалось, что диспергант на основе ПИБАД растворяется в связующем не полностью, из-за чего возникли проблемы при откатке пленок и в результате, скорее всего, охрупчивание композита. СБЦФИИ растворился в связующем полностью.
*ДМА - динамический механический анализ.
*УНТ = углеродные нанотрубки с карбоксильными функциональными группами, степень чистоты 98%, производство Наношел, Индия)
Таким образом, предлагаемый способ позволяет получать безрастворным способом нанокомпозиционные связующие in situ.
Низкая теплопроводность цианат-эфирных связующих при всех их плюсах не позволяет обеспечить эффективный теплосъем с углепластика: использование нанокомпозиционных связующих позволяет полностью решить эту проблему, не увеличивая при этому массу конструкции.
Нанокомпозиционные углепластики, пленки и покрытия, приготовленные по безрастворной технологии, открывают возможности для создания материалов специального назначения с заданными свойствами готового изделия: электропроводностью, теплопроводностью, диэлектрическими и частотными характеристиками.
Диспергированные по патентуемому способу наноматериалы могут быть использованы для создания нанокомпозиционных углепластиков с улучшенной изотропностью, влагостойкостью, физико-механическими свойствами, повышенной долговечностью в эксплуатации при сверхнизких и высоких температурах и повышенной размеростабильностью.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокомпозиционных микропористых пластиков с армированными порами | 2016 |
|
RU2688554C2 |
Способ ковалентной функционализации углеродных нанотрубок с одновременным ультразвуковым диспергированием для введения в эпоксидные композиции | 2017 |
|
RU2660852C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИАНАТ-ЭФИРНОГО ПРЕПОЛИМЕРА И СПОСОБ ПОЛУЧЕНИЯ ЦИАНАТ-ЭФИРНОЙ СМОЛЫ | 2019 |
|
RU2738629C1 |
Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения | 2016 |
|
RU2635606C2 |
ГИБРИДНЫЙ ЭЛЕКТРОПРОВОДЯЩИЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИМЕРА И УГЛЕРОДНЫХ НАНОТРУБОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2017 |
|
RU2665394C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ ЙОДОМ УГЛЕРОДНЫХ НАНОТРУБОК | 2018 |
|
RU2687447C1 |
Газочувствительный композит и способ его изготовления | 2018 |
|
RU2688742C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО КОМПОЗИТА НА ОСНОВЕ ОРИЕНТИРОВАННЫХ УГЛЕРОДНЫХ НАНОТРУБОК | 2013 |
|
RU2560382C2 |
Полимерный нанокомпозиционный материал и способ его получения | 2023 |
|
RU2803471C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТА ПОЛИМЕР/УГЛЕРОДНЫЕ НАНОТРУБКИ НА ПОДЛОЖКЕ | 2009 |
|
RU2400462C1 |
Изобретение относится к нанотехнологии и может быть использовано при изготовлении углепластиков для космического и авиационного аппаратостроения, а также для строительных конструкций. Способ получения нанокомпозиционных связующих без использования растворителей включает два этапа. На первом этапе при комнатной температуре одновременно измельчают мономер цианат-эфира, углеродные нанотрубки и диспергант на основе сульфонилбисцианатофенилизоиндолиндиона. На втором этапе in situ олигомеризуют указанный мономер и обрабатывают полученную смесь ультразвуком. Изобретение позволяет получить материалы с заданными свойствами, например электро- и теплопроводностью, а также улучшить их изотропность, повысить влагостойкость и долговечность. 2 ил., 4 табл., 2 пр.
Способ получения нанокомпозиционных связующих без использования растворителей, включающий в себя два этапа, при этом на первом этапе одновременно измельчают мономер цианат-эфира, углеродные нанотрубки и диспергант на основе сульфонилбисцианатофенилизоиндолиндиона при комнатной температуре; на втором этапе олигомеризуют и обрабатывают ультразвуком цианат-эфирный мономер, углеродные нанотрубки и диспергант на основе сульфонилбисцианатофенилизоиндолиндиона in situ.
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО ПОЛИМЕРНОГО НАНОКОМПОЗИТА | 2011 |
|
RU2497843C2 |
ПРЕПРЕГ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2005 |
|
RU2278028C1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Колосоуборка | 1923 |
|
SU2009A1 |
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем | 1924 |
|
SU2012A1 |
Авторы
Даты
2018-08-01—Публикация
2016-04-29—Подача