Способ получения галлата лантана LaGaO Российский патент 2018 года по МПК C01F17/00 C01G15/00 

Описание патента на изобретение RU2663736C2

Изобретение относится к области твердофазных химических превращений неорганических веществ, а именно синтезу тройных соединений галлата лантана со структурой перовскита, и может быть использовано в химической промышленности, микроэлектронике и оптоэлектронике.

Известен способ получения галлата лантана, заключающийся в спекании исходных оксидов лантана (Lа2О3) и (In2О3). Предварительно растирали исходные оксиды в циркониевом тигле и этиловом спирте. Полученные оксиды отжигали при температуре 1200-1300°С в течение 24 часов. Полученные оксиды смешивали при соотношении 50:50 мол.% при температуре 1500°С в течение 6 часов (Kyung Bin Yoo, Gyeong Man Choi Performance of La-doped strontium titanate (LST) fnode jn LaGaO3-based SOFC // Solid State Ionic. 180. 2009. P. 867-871).

Недостатком данного способа является использование при синтезе высоких температур (1500°С) и предварительная подготовка исходных оксидов, увеличивающих время получения галлатов.

Известен также способ получения галлата лантана из смесей оксидов и нитратов лантана и галлия, при котором смесь оксидов или нитратов прокаливают сначала при температуре 1200°С в течение 24-72 часов, а затем при 1300°С в течение 12-36 ч (Chandrasekaran A., Azad А.-М. Densification LaGaO3 at low sintering temperatures via Fe3+ substration at Ga3+ site. // Journal of material science. 36. 2001. P. 4745-4754).

Недостатком данного способа является то, что при синтезе используется в качестве допигирующего агента соединение Fe3+, что приводит к получению побочного продукта от 15 до 55 мол.% оксида железа (Fе2О3), а также использование для синтеза высоких температур: 1200°С для первой стадии отжига и 1300°С для второй стадии отжига.

Известен механохимический метод синтеза перовскитов, который заключается в предварительной механической обработке смесей кислородсодержащих соединений (оксидов, гидроксидов, карбонатов) переходных элементов ПЭ и редкоземельных элементов РЗЭ перед стадией их термообработки [РФ 2065325, B01J 23/10, 20.08.1996]. Увеличение дисперсности сырья приводит к уменьшению температуры синтеза (до 500-700°С) и длительности термической обработки, т.е. снижению энергоемкости методики, в сравнении с традиционным керамическим синтезом. Важным достоинством метода является невысокая энергоемкость, сокращение времени синтеза, отсутствие водных стоков из различного сырья с удельной поверхностью, ранее достигаемой только методом соосаждения.

К недостаткам метода относятся возможность загрязнения продукта синтеза абразивным материалом, так называемый «намол».

Наиболее близким по признакам к предлагаемой технологии является способ получения ортогаллата лантана (авторское свидетельство SU 266751, кл. С01F 17/00, 1973, всего 1 с). Метод заключается в том, что эквимолярные смеси растворов нитратов лантана и галлия упаривают с последующим прокаливанием сухого остатка при температуре не выше 900°С.

Недостатком этого метода является использование в качестве исходных смесей твердых нитратов, приводящее к тому, что прокаливание смесей нитратов не всегда обеспечивает равномерное смешивание компонентов.

В основу изобретения положена задача получения галлата лантана при более низкой температуре, исключив все высокотемпературные стадии.

Предлагаемый способ исключает применение стадии СВЧ-обработки и механической активации смесей исходных реагентов, так как смешивание растворов обеспечивает хорошее смешивание реагентов. Получающиеся в результате осаждения смеси α-модификаций гидратированных оксидов обладают высокой реакционной способностью, поэтому для синтеза достаточно прокаливание при 800°С в течение 6-8 часов. Для синтеза можно использовать нитраты редкоземельных элементов, например La, Се, Y, Nd, и др. нитрат галлия.

Задача решается тем, что предлагается способ получения галлата лантана, включающий осаждение (аммиаком) смеси гидратированных оксидов лантана и галлия (их α-формы La2O3⋅nH2O, Gа2О3⋅nH2О, которые отличаются достаточно высокой химической активностью по сравнению с β-формами (La2O3, Gа2О3, которые получаются при прокаливании исходных оксидов)) и отжиге полученных смесей при 800°С в течение 24 часов.

Пример. Синтез галлата лантана LaGaO3

В качестве исходных соединений для синтеза выбирают La(NO3)3⋅6Н2О (ХЧ), Ga(NO3)2⋅6Н2О (ХЧ). Соли смешивают в стехиометрических количествах, соответствующих конечному продукту LaGaO3.

Способ осуществляется следующим образом. Процесс синтеза проводят в несколько стадий:

1 стадия: нитраты галлия и лантана марки ХЧ растворяют в воде, подкисленной азотной кислотой, для исключения гидролиза. Соотношения исходных нитратов берется таким образом, чтобы получить галлат требуемого состава (LaGaO3). Раствор смеси нитратов обеспечивает однородное смешивание компонентов;

2 стадия: производится осаждение 10%-ным гидроксидом аммония однородной смеси гидратированных оксидов лантана и галлия. Полученный осадок промывают дистиллированной водой и высушивают в сушильном шкафу при 105°С.

La(NO3)3+Ga(NO3)3+6NH4OH=La(OH)3+Ga(OH)3+6NH4NO3.

3 стадия: высушенные смеси оксидов прокаливают в муфельной печи при 800°С в течение 24 ч.

Рентгенофазовый анализ образцов до и после прокаливания на воздухе проводят на дифрактометре Bruker D8 (Германия) в диапазоне углов 20-80° по 2 тета, с шагом 0.05, 5 с накопления в точке. Идентификацию фаз проводят по базе данных ISCD и JCPDS.

Термический анализ выполняют на дериватографе Q-1500 в интервале температур 20-1000°С на воздухе и в токе гелия. Скорость нагрева образцов составляет 10°С/мин, навеска образца - 200-1000 мг.

Рентгенофазовый анализ показал, что при этих условиях получается галлат лантана (LaGaO3). Рентгенограмма полученного галлата и рентгенограмма галлата из базы JCPDS совпадают (Фиг. 1, табл. 1).

Исследование поверхности полученного галлата методом атомно-силовой микроскопии (прибор Solver Next) показало ее очень развитую поверхность (Фиг. 2).

Основным преимуществом изобретения является снижение температуры синтеза с 1300-1500°С до 800°С, чистота полученного продукта, которая определяется чистотой исходных веществ, отсутствие трудоемких промежуточных стадий.

Похожие патенты RU2663736C2

название год авторы номер документа
Способ получения индатов редкоземельных элементов P3ЭInO 2018
  • Новоженов Владимир Антонович
  • Новоженов Александр Владимирович
  • Белова Ольга Владимировна
RU2688606C1
Способ получения галлатов неодима NdGaO, NdGaO и NdGaO 2019
  • Новоженов Владимир Антонович
  • Белова Ольга Владимировна
RU2721700C1
СПОСОБ ПОЛУЧЕНИЯ КИСЛОРОДОПРОВОДЯЩЕЙ КЕРАМИКИ НА ОСНОВЕ ГАЛЛАТА ЛАНТАНА 2009
  • Корнева Алена Александровна
  • Красильников Владимир Николаевич
  • Шкерин Сергей Николаевич
  • Гырдасова Ольга Ивановна
  • Липилин Александр Сергеевич
  • Никонов Алексей Викторович
  • Ремпель Алексей Андреевич
RU2387052C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРОВСКИТОВ 2009
  • Яковлева Ирина Сергеевна
  • Исупова Любовь Александровна
RU2440292C2
Способ приготовления катализаторов для получения синтез-газа путем углекислотной конверсии метана 2018
  • Зверева Ирина Алексеевна
  • Яфарова Лилия Валериевна
  • Числова Ирина Васильевна
  • Шешко Татьяна Федоровна
RU2690496C1
СОДЕРЖАЩИЙ ГЕКСААЛЮМИНАТ КАТАЛИЗАТОР РИФОРМИНГА УГЛЕВОДОРОДОВ И СПОСОБ РИФОРМИНГА 2013
  • Шунк Штефан
  • Миланов Андриан
  • Штрассер Андреас
  • Вассершафф Гвидо
  • Руссьер Томас
RU2631497C2
Способ жидкофазного синтеза нанокерамических материалов в системе LaO-MnO-NiO для создания катодных электродов твердооксидного топливного элемента 2020
  • Калинина Марина Владимировна
  • Арсентьев Максим Юрьевич
  • Федоренко Надежда Юрьевна
  • Шилова Ольга Алексеевна
RU2743341C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 2014
  • Дедов Алексей Георгиевич
  • Локтев Алексей Сергеевич
  • Моисеев Илья Иосифович
  • Мухин Игорь Евгеньевич
RU2573005C1
СПОСОБ ГИДРИРОВАНИЯ НИТРИЛА 1996
  • Кордье Жорж
  • Попа Жан-Мишель
RU2189376C2
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСА "ЗОЛЬ-ГЕЛЬ" ПО МЕНЬШЕЙ МЕРЕ ИЗ ТРЕХ СОЛЕЙ МЕТАЛЛОВ И ПРИМЕНЕНИЕ СПОСОБА ДЛЯ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОЙ МЕМБРАНЫ 2012
  • Рише Николя
  • Шартье Тьерри
  • Россиньоль Фабрис
  • Виве Орельен
  • Жеффруа Пьер-Мари
RU2608383C2

Иллюстрации к изобретению RU 2 663 736 C2

Реферат патента 2018 года Способ получения галлата лантана LaGaO

Изобретение может быть использовано в химической промышленности, микроэлектронике и оптоэлектронике. Способ получения галлата лантана LaGaO3 со структурой перовскита включает осаждение раствором аммиака из смеси растворов нитратов лантана и галлия гидратированных оксидов лантана и галлия. Полученную смесь гидратированных оксидов лантана и галлия промывают, высушивают и прокаливают при 800°С в течение 24 часов. Изобретение позволяет снизить температуру синтеза, повысить чистоту продукта. 2 ил., 1 табл., 1 пр.

Формула изобретения RU 2 663 736 C2

Способ получения галлата лантана LaGaO3, включающий осаждение раствором аммиака из смеси растворов нитратов лантана и галлия гидратированных оксидов лантана и галлия с последующей промывкой и высушиванием полученных гидратированных оксидов, а также прокаливанием смеси при 800°С в течение 24 часов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663736C2

СПОСОБ ПОЛУЧЕНИЯ ОРТОГАЛЛАТА ЛАНТАНА 0
SU266751A1
СПОСОБ ТВЕРДОФАЗНОГО СИНТЕЗА ШИХТЫ ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЛАНТАНГАЛЛИЕВОГО ТАНТАЛАТА 2009
  • Аникин Олег Викторович
  • Бузанов Олег Алексеевич
  • Голованов Валерий Филиппович
  • Давыденко Александр Владимирович
  • Кознов Георгий Георгиевич
  • Лисицкий Игорь Серафимович
  • Полякова Галина Васильевна
  • Сахаров Сергей Александрович
RU2413041C2
СПОСОБ ПОЛУЧЕНИЯ КИСЛОРОДОПРОВОДЯЩЕЙ КЕРАМИКИ НА ОСНОВЕ ГАЛЛАТА ЛАНТАНА 2009
  • Корнева Алена Александровна
  • Красильников Владимир Николаевич
  • Шкерин Сергей Николаевич
  • Гырдасова Ольга Ивановна
  • Липилин Александр Сергеевич
  • Никонов Алексей Викторович
  • Ремпель Алексей Андреевич
RU2387052C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРОВСКИТОВ 2009
  • Яковлева Ирина Сергеевна
  • Исупова Любовь Александровна
RU2440292C2
US 5824278 A1, 20.10.1998
STIJEPOVIC I
et al., Conductivity of doped LaGaO 3 prepared by citrate sol-gel method, Journal of Optoelectronics and Advanced Materials, 2010, Vol
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
СЧЕТЧИК ЧИСЛА ПРОДАННЫХ В РАЗНЫХ КАССАХ БИЛЕТОВ КАК ОДНОЙ КАТЕГОРИИ, ТАК И РАЗНЫХ КАТЕГОРИЙ 1911
  • Кипарский А.В.
SU1098A1

RU 2 663 736 C2

Авторы

Новоженов Владимир Антонович

Новоженов Александр Владимирович

Белова Ольга Владимировна

Даты

2018-08-09Публикация

2016-11-08Подача