Способ получения полых микросфер феррита висмута Российский патент 2018 года по МПК C01G29/00 C01G49/00 B01J13/04 B01J19/10 B22F9/16 B82B3/00 B82Y30/00 B01J23/843 B01J35/08 

Описание патента на изобретение RU2663738C1

Изобретение относится к химической промышленности, в частности, к способу получения наноструктурированных порошков феррита висмута для использования в микроэлектронике, спинтронике, устройствах для магнитной записи информации, фотокатализаторов, материалов для фотовольтаики и т.д.

Известен способ получения полых сферических частиц феррита висмута. Способ включает следующие этапы: добавление додецилбензолсульфоната натрия и стирола в нагревательный контейнер, содержащий деионизированную воду при комнатной температуре, добавление персульфата калия в нагревательный контейнер с перемешиванием и проведение изотермической реакции в течение 2 часов; добавление стирола, гадолевой кислоты, персульфата калия и бикарбоната натрия в нагревательный контейнер, проведение реакции в течение от 2 до 5 часов, а затем проведение центрифугирования с целью отделения нанокристаллов сополимера стирола и гадолеиновой кислоты; ультразвуковое диспергирование полученных наносфер сополимера в воде, добавление в дисперсию поливинилпирролидона, 9-водного нитрата трехвалентного железа и 5-водного нитрата висмута в молярном соотношении 1: 1, ультразвуковая обработка для получения суспензии; добавление водного раствора мочевины в суспензию, проведение изотермической реакции, затем проведение фильтрации с получением висмутовых композитных наносфер с полистирол-гадолеиновой кислотой и проведение высокотемпературного прокаливания, в результате чего получают полые наносферы феррита висмута (патент CN 105536807; МПК B01J 23/843, B01J 35/08, C01G 49/00, C02F 1/30; 2016 год).

Недостатком известного способа является многостадийность процесса, использование на каждой стадии специального оборудования и применение большого количества вредных органических соединений, которые остаются в фильтрате и требуют дальнейшей утилизации.

Наиболее близким к предлагаемому техническому решению является способ получения полых микросфер феррита висмута, включающий следующие стадии: растворение соли висмута и соли трехвалентного железа, в частности нитратов висмута и железа в смешанном спиртовом растворе абсолютного этилового спирта и глицерина, добавление лимонной кислоты и равномерное перемешивание, диспергирование ультразвуком, помещение в гидротермальный сосуд из нержавеющей стали для проведения термического старения в течение 24 часов, сушку продукта в течение 12 часов и его прокаливание в течение 4 часов.

Недостатками известного способа являются длительность процесса, обусловленная в частности наличием дополнительных стадий термического старения, фильтрации, неоднократной промывки продукта, а также использование органических соединений в качестве исходных.

Таким образом, перед авторами стояла задача разработать способ получения феррита висмута в виде полых микросфер, обеспечивающий значительное сокращение времени процесса.

Поставленная задача решена в предлагаемом способе получения полых микросфер феррита висмута, включающем ультразвуковое воздействие на смесь нитратов железа и висмута, взятых в стехиометрическом соотношении, сушку и последующее прокаливание, в котором ультразвуковому воздействию с частотой 1,7–3,0 МГц при скорости подачи воздуха 0,150–0,185 м/с подвергают водный раствор смеси нитратов железа и висмута с концентрацией 0,24-0,48 моль/л (в пересчете на феррит висмута), сушат полученный продукт при температуре 250-350°С и прокаливают при температуре 800-820°С.

В настоящее время из патентной и научно-технической литературы не известен способ получения полых микросфер феррита висмута с использованием ультразвукового воздействия с частотой 1,7–3,0 МГц при скорости подачи воздуха 0,150–0,185 м/с на водный раствор смеси нитратов железа и висмута с концентрацией 0,24-0,48 моль/л (в пересчете на феррит висмута), сушкой полученного продукта при температуре 250-350°С и прокаливанием при температуре 800-820°С.

Авторами предлагаемого технического решения разработан способ получения полых микросфер феррита висмута, обеспечивающий непрерывный процесс синтеза. Водный раствор смеси нитратов железа и висмута с концентрацией 0,24-0,48 моль/л (в пересчете на феррит висмута) посредством звукового воздействия переводят во взвешенное состояние с образованием аэрозоля, частицы которого подаются непосредственно в зону сушки с температурой 250-350°С, а затем в зону прокаливания с температурой 800-820°С. Проведенные авторами исследования позволили определить параметры и условия ультразвукового воздействия, обеспечивающие получения капель аэрозоля, которые формируются в процессе сушки в полые микросферы. Размер капель аэрозоля пропорционален корню кубическому из(1/ F2), где F – частота ультразвука. Так, при частоте ниже 1,7 Мгц наблюдается резкое увеличение размера капель более 10 мкм, что затрудняет образование микросфер. Повышение частоты выше 3 Мгц нецелесообразно, так как размер капель при дальнейшем увеличении частоты остаётся практически неизменным. Средний размер капель аэрозоля в области частот от 1,7 до 3 МГц составляет порядка 2,5 мкм, что обусловливает получение микросфер с размером 0,69-0,98 мкм. Для такого аэрозоля скорость движения капель в реакторе равна скорости потока воздуха и составляет 0,150–0,185 м/с. Количество капель аэрозоля, уносимого воздухом пропорционально его расходу (скорости потока). При скорости подачи воздуха менее 0,150 м/с резко уменьшается производительность. При скорости подачи воздуха более 0,185 м/с не происходит полного синтеза феррита висмута в высокотемпературной области, и, как следствие, получают неоднофазные образцы.

Концентрация исходного водного раствора нитратов также оказывает существенное влияние на конечный продукт. А именно, при концентрации ниже 0,24 моль/л (в пересчете на феррит висмута) в конечном продукте наблюдаются примесные следы фазы Bi25FeO40. При концентрации выше 0,48 моль/л (в пересчете на феррит висмута) наблюдается увеличение диаметра сфер феррита висмута более 1 мкм. Экспериментально установлено, что диаметр частиц хорошо согласуется с теоретическим выражением:

где СF - концентрация феррита висмута, ρp – плотность высушенного материала. Плотность частиц, ρP, в этом уравнении - это масса частицы, деленная на объем сферы диаметром dg и может быть значительно ниже истинной плотности, поскольку она включает внутренние и внешние пустоты и совпадает с результатами измерений пикнометрической плотности. dD – средний размер капель аэрозоля.

Исследования авторов основывались на предположении, что морфология частиц формируется во время сушки и сохраняется в процессе последующего прокаливания. Сушка капель аэрозоля, содержащих растворённые частицы, связана со сложным многофазным переносом тепла и массы. Процесс испарения условно можно разделить на две стадии: первая состоит из испарения до образования оболочки частиц или когда отношение твердое вещество к жидкости достаточно велико и второй этап, где размер капли обычно остаётся неизменным, а температура капли приближается к температуре окружающей среды. После сушки капля попадает в зону прокаливания. Во время прокаливания сохраняется сформированная в результате сушки морфология. Важным является контроль механизмов, которые определяют радиальное распределение компонентов в процессе сушки. По мере того, как испаряющаяся капля сжимается, уменьшение доли воды приводит к увеличению концентрации растворенных веществ на поверхности. Это вызывает диффузионный поток от поверхности к центру капли. Процесс обусловлен различием между давлением паров воды около поверхности капли и их парциальным давлением в газовой фазе. Скорость испарения зависит от баланса энергии, необходимой для испарения воды и энергии, переносимой на поверхность капли, которые определяются температурой воздуха во время сушки. Проведённые авторами оценки скорости испарения и коэффициентов диффузии позволили оценить температуру сушки.

Первый критерий это коэффициент испарения k с размерностью м2/с. Время необходимое для испарения определяется выражением:

t = dD/k

Наши расчёты и предварительные эксперименты показали, что при температуре ниже 200°С капля не успевает высохнуть. Второй критерий это радиальное распределение растворённых компонентов в объёме капли. Температура сушки определяет радиальное распределение компонентов в процессе сушки, так как при постоянном расходе аэрозоля приводит к изменению коэффициента диффузии и скорости испарения. Критерием возникновения пересыщенного раствора на поверхности капли является безразмерный параметр Пекле.

где Di – коэффициент диффузии (м2/с) i – го компонента (ионов железа и висмута).

Тогда отношение концентрации Cs,i i – го компонента к средней концентрации Cm,i в капле приближённо описывается выражением

Для того чтобы получить полые частицы, параметр Pe должен быть больше единицы как для ионов железа, так и для ионов висмута. Проведённые расчёты позволили установить, что параметр Пекле превышает единицу при температуре сушки более 250 оС. Экспериментально установлено, что при увеличении температуры от 250°С до 350°С и концентрации раствора нитратов железа и висмута 0,32 моль/л (в пересчете на феррит висмута) диаметр сфер уменьшается от 0,86 до 0,75 мкм, а толщина оболочки увеличивается от 0,073 до 0,099 мкм. Дальнейшее увеличение температуры сушки приводит к увеличению диаметра сфер из-за формирования более рыхлой оболочки. Поэтому для формирования частиц с плотной оболочкой выбран диапазон температур сушки 250-350°С. При увеличении концентрации раствора нитратов железа и висмута от 0,24 до 0,48 моль/л (в пересчете на феррит висмута) и температуре сушки 350°С диаметр сферы увеличивается от 0,69 мкм до 0,98 мкм, а толщина оболочки увеличивается от 0,093 до 0,12 мкм. При дальнейшем увеличении концентрации диаметр сфер становится больше 1 мкм. При концентрации раствора нитратов железа и висмута меньше 0,24 моль/л (в пересчете на феррит висмута) образцы неоднофазны, что связано с различием коэффициентов диффузии для ионов железа и висмута. Поэтому был выбран диапазон концентраций от 0,24 до 0,48 моль/л.

Предлагаемый способ обеспечивает непрерывный поточный процесс, проводимый в пределах одной установки, включающей зону ультразвукового воздействия, зону сушки и зону прокаливания, каждая из которых характеризуется определенным температурным интервалом.

Предлагаемый способ может быть реализован следующим образом. Готовят водный раствор нитратов железа и висмута, взятых в стехиометрическом соотношении, с концентрацией 0,24-0,48 моль/л (в пересчете на феррит висмута), подвергают раствор ультразвуковой обработке на частоте 1,7-3,0 МГц при скорости подачи воздуха 0,150–0,185 м/с для образования капель аэрозоля, которые поступают в зону сушки с температурой 250°С-350°С и затем в зону прокаливания с температурой прокаливания 800°С-820°С. Время получения составляет 5,4 с. После того как израсходуется весь раствор, процесс останавливают и извлекают готовый порошок из бункера для сбора продукта. В результате получают порошок феррита висмута состава BiFeO3 в виде полых микросфер диаметра 0,69-0,98 мкм и толщиной оболочки 0,073–0,12 мкм.

Полученный продукт аттестован следующими методами: фазовый состав продукта определялся с помощью рентгенофазового анализа, проведенного на XRD-7000 (SHIMADZU) с вторичным монохроматором Cu Kα излучения с поликристаллическим кремнием, используемым в качестве внутреннего стандарта. Анализ рентгенограмм осуществляли с помощью программы PowderCell. Морфологию образцов изучали с помощью сканирующего электронного микроскопа JEOL JSM-6390LA.

Рентгенограммы полученных образцов представлены на фиг. 1 и 3. Для всех полученных образцов рефлексы соответствуют ферриту BiFeO3 со структурой перовскита и пространственной группой R3c (ICSD Collection Code 15299), параметры элементарной ячейки а=0,55880 нм, с=1,38670 нм, рентгеновская плотность 8,31 г/см3. Средняя плотность, определенная с помощью гелевого пикнометра AccuPyc, составляет 5,3 г/см3. Разница между рентгеновской и средней плотностью косвенно доказывает, что частицы полые с непроницаемой для гелия оболочкой.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 50 мл раствора, содержащего нитраты железа и висмута, взятые по стехиометрии, в концентрации 0,32 моль/л (в пересчете на феррит висмута), помещают в емкость ультразвукового распылителя, устанавливают температуру зоны сушки 250°С, температуру зоны прокаливания 800°С. Ультразвуковую обработку проводят при частоте 1,7 МГц и скорости потока 0,185 м/с. По окончании синтеза готовый порошок достают из бункера для готового продукта. В результате получают однофазный феррит висмута BiFeO3 (фиг.1) с параметрами элементарной ячейки а=0,55880 нм, с=1,38670 нм и рентгеновской плотностью 8,31 г/см3. По данным сканирующей электронной микроскопии, порошок состоит из полых сфер со средним диаметром 0,86 мкм (фиг.2) и толщиной оболочки 0,073 мкм. Пикнометрическая плотность феррита 4,3 г/см3, что составляет 52% от рентгеновской.

Пример 2. Берут 50 мл раствора, содержащего нитраты железа и висмута, взятые по стехиометрии, в концентрации 0,32 моль/л (в пересчете на феррит висмута), помещают в емкость ультразвукового распылителя, устанавливают температуру зоны сушки 350°С, температуру зоны прокаливания 800°С. Ультразвуковую обработку проводят при частоте 1,7 МГц и скорости потока 0,15 м/с. По окончании синтеза готовый порошок достают из бункера для готового продукта. В результате получают однофазный феррит висмута BiFeO3 (фиг.3) с параметрами элементарной ячейки а=0,55880 нм, с=1,38670 нм и рентгеновской плотностью 8,31 г/см3. По данным сканирующей электронной микроскопии, порошок состоит из полых сфер со средним диаметром 0,75 мкм (фиг.4) и толщиной оболочки 0,099 мкм. Пикнометрическая плотность феррита 4,85 г/см3, что составляет 58% от рентгеновской.

Пример 3. Берут 50 мл раствора, содержащего нитраты железа и висмута, взятые по стехиометрии, в концентрации 0,24 моль/л (в пересчете на феррит висмута), помещают в емкость ультразвукового распылителя, устанавливают температуру зоны сушки 350°С, температуру зоны прокаливания 800°С. Ультразвуковую обработку проводят при частоте 3 МГц и скорости потока 0,185 м/с. По окончании синтеза готовый порошок достают из бункера для готового продукта. В результате получают однофазный феррит висмута BiFeO3 с параметрами элементарной ячейки а=0,55880 нм, с=1,38670 нм и рентгеновской плотностью 8,31 г/см3. По данным сканирующей электронной микроскопии, порошок состоит из полых сфер со средним диаметром 0,69 мкм и толщиной оболочки 0,093 мкм. Пикнометрическая плотность феррита 5,1 г/см3, что составляет 61% от рентгеновской.

Пример 4. Берут 50 мл раствора, содержащего нитраты железа и висмута, взятые по стехиометрии, в концентрации 0,48 моль/л (в пересчете на феррит висмута), помещают в емкость ультразвукового распылителя, устанавливают температуру зоны сушки 350°С, температуру зоны прокаливания 820°С. Ультразвуковую обработку проводят при частоте 3 МГц и скорости потока 0,150 м/с. По окончании синтеза готовый порошок достают из бункера для готового продукта. В результате получают однофазный феррит висмута BiFeO3 с параметрами элементарной ячейки а=0,55880 нм, с=1,38670 нм и рентгеновской плотностью 8,31 г/см3. По данным сканирующей электронной микроскопии, порошок состоит из полых сфер со средним диаметром 0,98 мкм и толщиной оболочки 0,12 мкм. Пикнометрическая плотность феррита 5,3 г/см3, что составляет 63% от рентгеновской.

Таким образом, авторами предлагается способ получения полых микросфер феррита висмута, обеспечивающий значительное сокращение процесса получения (время получения составляет порядка нескольких секунд).

Работа выполнена при поддержке РФФИ гранд № 17-08-00893.

Похожие патенты RU2663738C1

название год авторы номер документа
Способ получения пленок феррита висмута и установка для электростатического распыления 2020
  • Дмитриев Александр Витальевич
  • Владимирова Елена Владимировна
  • Есаулков Алексей Петрович
RU2730725C1
Способ получения нанопорошков феррита висмута 2019
  • Абиев Руфат Шовкет Оглы
  • Проскурина Ольга Венедиктовна
  • Гусаров Виктор Владимирович
RU2748446C2
Способ получения наноструктурированных порошков ферритов и установка для его осуществления 2017
  • Дмитриев Александр Витальевич
  • Владимирова Елена Владимировна
  • Кандауров Михаил Васильевич
  • Подгорбунских Данил Евгеньевич
RU2653824C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ПОРОШКА ЛИТИЙ-ЦИНК-МАРГАНЦЕВОГО ФЕРРИТА 2021
  • Мартинсон Кирилл Дмитриевич
  • Иванов Андрей Александрович
  • Пантелеев Игорь Борисович
  • Попков Вадим Игоревич
RU2768724C1
Способ получения прозрачных наноразмерных плёнок феррита висмута 2015
  • Лупейко Тимофей Григорьевич
  • Баян Екатерина Михайловна
RU2616305C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИТИЙ-ЦИНК-МАРГАНЦЕВОЙ ФЕРРИТОВОЙ КЕРАМИКИ 2023
  • Мартинсон Кирилл Дмитриевич
  • Сахно Дарья Дмитриевна
  • Беляк Владислав Евгеньевич
  • Беляева Ирина Дмитриевна
  • Беляева Анна Дмитриевна
RU2817713C1
Микрореактор-смеситель во встречными закрученными потоками 2020
  • Абиев Руфат Шовкет Оглы
RU2741735C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОПОРОШКА НИКЕЛЬ-ЦИНКОВОГО ФЕРРИТА 2023
  • Мартинсон Кирилл Дмитриевич
  • Сахно Дарья Дмитриевна
  • Беляк Владислав Евгеньевич
  • Попков Вадим Игоревич
RU2813525C1
Способ получения нанопорошков сложного германата лантана и щелочного металла 2018
  • Дмитриев Александр Витальевич
  • Владимирова Елена Владимировна
  • Сурат Людмила Львовна
  • Тютюнник Александр Петрович
  • Зубков Владимир Георгиевич
RU2690916C1
Способ получения наноструктурированных полых микросфер оксида ванадия (варианты) 2020
  • Владимирова Елена Владимировна
  • Гырдасова Ольга Ивановна
  • Дмитриев Александр Витальевич
RU2739773C1

Иллюстрации к изобретению RU 2 663 738 C1

Реферат патента 2018 года Способ получения полых микросфер феррита висмута

Изобретение может быть использовано для получения наноструктурированных порошков феррита висмута BiFeO3, применяемых в микроэлектронике, спинтронике, устройствах для магнитной записи информации, в производстве фотокатализаторов, материалов для фотовольтаики. Способ получения полых микросфер феррита висмута включает ультразвуковое воздействие на смесь нитратов железа и висмута, взятых в стехиометрическом соотношении, сушку и последующее прокаливание. Ультразвуковому воздействию подвергают водный раствор смеси нитратов железа и висмута с концентрацией 0,24-0,48 моль/л в пересчете на феррит висмута. Водный раствор переводят во взвешенное состояние с образованием аэрозоля, частицы которого подаются в зону сушки, а затем в зону прокаливания. Частота ультразвукового воздействия 1,7–3,0 МГц, скорость подачи воздуха 0,150–0,185 м/с. Полученный продукт сушат при 250-350°С и прокаливают при 800-820°С. Изобретение позволяет сократить процесс получения полых микросфер феррита висмута до нескольких секунд. 4 ил., 4 пр.

Формула изобретения RU 2 663 738 C1

Способ получения полых микросфер феррита висмута, включающий ультразвуковое воздействие на смесь нитратов железа и висмута, взятых в стехиометрическом соотношении, сушку и последующее прокаливание, отличающийся тем, что ультразвуковому воздействию с частотой 1,7–3,0 МГц при скорости подачи воздуха 0,150–0,185 м/с подвергают водный раствор смеси нитратов железа и висмута с концентрацией 0,24-0,48 моль/л в пересчете на феррит висмута, сушат полученный продукт при температуре 250-350°С и прокаливают при температуре 800-820°С.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663738C1

CN 101791558 A, 04.08.2010
RU 2016117571 A, 15.11.2017
CN 106698521 A, 24.05.2017
CN 105536807 A, 04.05.2016
UXIA SUN et al., Study on visible light response and magnetism of bismuth ferrites synthesized by a low temperature hydrothermal method, Ceramics International,v
Машина для изготовления проволочных гвоздей 1922
  • Хмар Д.Г.
SU39A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЗЕРНЕНОГО АЛЮМИНИЯ ДЛЯ ТЕРМИТА 1926
  • Карасев М.А.
SU4651A1

RU 2 663 738 C1

Авторы

Дмитриев Александр Витальевич

Владимирова Елена Владимировна

Кандауров Михаил Васильевич

Даты

2018-08-09Публикация

2017-11-24Подача