Изобретение относится к области порошковой металлургии, а именно к способам изготовления легированных порошков сталей методом восстановления галогенидов металлов в расплавах солей.
Легированные порошки сталей широко используются при изготовлении коррозионностойких и износостойких изделий методами традиционной порошковой металлургии, 3D печати, МИМ-технологий.
В процессе получения легированных порошков методом восстановления в расплавах солей существует проблема неполного усвоения и неравномерного распределения легирующих компонентов в порошках, что затрудняет гарантированное получение требуемых свойств сталей. В большинстве случаев неполнота и неравномерность легирования обусловлена физико-химическими свойствами самих легирующих компонентов. Например, причиной неполного усвоения легирующих компонентов может стать их повышенная летучесть, в результате чего они быстро испаряются из зоны реакции, не успевая восстановиться до металла. В расплавах хлоридов щелочных металлов высокой летучестью обладают хлориды Ti, Si, Mo, Nb, V и, напротив, крайне низкую летучесть имеют хлориды Fe, Cr, Ni, Cu, Со, La, Zr, Mn.
Актуален поиск путей стабилизации химического состава легированных порошков.
Известен способ получения порошков металлов (сплавов, сталей) [Ru №2423557 от 18.03.2009], включающий электрохимическое растворение металлических анодов - прутков металлов (сплавов, сталей) и восстановление образующихся хлоридов металлов в объеме электролита эквивалентным количеством генерируемого на катоде восстановителя - металла электролита, охлаждение расплава, отмывку порошка от электролита водой, сушку порошка. При получении данным методом порошков стали 12Х18Н10Т процесс электрохимического растворения и восстановления проводят в расплавах хлоридов щелочных или щелочноземельных металлов при 800°С в течение 0,6 ч.
Недостатком способа является невозможность получения порошков сталей с требуемым химическим составом, что связано с испарением из расплава летучих хлоридов Ti и Si, так как процесс восстановления проводят при высокой температуре 800°С в течение достаточно длительного времени -0,6 ч.
Известен способ получения порошков редких металлов и их сплавов [RU №2416493 от 15.12.2009], включающий приготовление шихты из комплексных солей хлоридов редких металлов и хлорида калия, нагрев и плавление шихты при 750-800°С, единовременное магниетермическое восстановление хлоридов редких металлов, выдержку расплава в изотермических условиях в течение 15±5 минут, охлаждение расплава, отделение порошка от плава промывкой кислотой и водой, сушку порошка. При получении данным методом порошков сплава Zr-5% 1Nb процесс восстановления проводят при 750°С.
Недостатком способа является проблематичность получения порошков сплавов Zr-Nb с точным химическим составом из-за испарения хлоридов Nb в процессе плавления шихты при 750°С. В зависимости от продолжительности операции плавления шихты изменяется количество испаренного ниобия, а значит и состав порошка сплава.
Наиболее близкой по технической сущности к предлагаемому изобретению является принятая за прототип технология получения порошков стали 12Х18Н10Т, основанная на кальциетермическом восстановлении смеси хлоридов металлов в расплаве хлорида калия [«Новая технология получения порошков нержавеющих сталей, пригодных для использования в аддитивных технологиях» /А.В. Ивакин, О.А. Аржаткина, А.В. Самохин, О.В. Токарева, В.Д. Федоров [Электронный ресурс]: II международная конференция «Аддитивные технологии: настоящее и будущее»: ВИАМ, 16.03.2016. - Режим доступа к сборнику трудов: admin@viam.ru]. Технология включает хлорирование отходов стали 12Х18Н10Т (состав, %: 17-19 Cr, 8-13 Ni, 0,4-1,0 Ti, 0,2-0,8 Si) в расплаве хлорида калия при 850°С, кальциетермическое восстановление хлоридов металлов в расплаве при 800-850°С, охлаждение расплава, отмывку порошка стали, сушку порошка.
Недостатком данной технологии получения порошка является утрата легирующих компонентов Ti и Si на стадии хлорирования отходов стали из-за их испарения в виде летучих хлоридов.
Техническим результатом предложенного способа является получение порошков сталей с заданным содержанием легирующих компонентов и достижение равномерного распределение этих компонентов в восстановленных порошках.
Технический результат достигается тем, что в способе получения порошка стали, включающем хлорирование отходов стали в расплаве хлорида калия, кальциетермическое восстановление хлоридов металлов в расплаве при перемешивании, охлаждение расплава, отмывку порошка стали, сушку порошка, согласно изобретению перед восстановлением в расплав вводят легирующие металлы в виде фторсодержащих солей.
Технический результат достигается и тем, что введение фторсодержащих солей в расплав осуществляют единовременно. Достижению технического результата способствует введение фторсодержащих солей в расплав при температуре 780-800°С и перемешивании со скоростью 300-360 об/мин, а также выдержка расплава в изотермических условиях при перемешивании в течение 10-20 минут.
Сущность способа заключается в совокупности отличительных признаков проведения процесса введения легирующих металлов в расплав солей.
Первым существенным отличием является введение в расплав легирующих металлов в виде комплексных фторсодержащих солей типа K2TiF6, K2SiF6, или фторидов низших валентностей MoF3, VF3 в количестве, соответствующем марке стали. Данные фторсодержащие соли, с одной стороны, растворимы в расплаве хлорида калия, а с другой стороны, не испаряются из расплава, что обеспечивает равномерное распределение всех легирующих компонентов в расплаве, а значит и в получаемом порошке.
Вторым существенным отличием является введение фторсодержащих солей в расплав при температуре 780-800°С. Указанной температуры достаточно, чтобы завершился процесс растворения фторсодержащих солей легирующих металлов в расплаве хлорида калия. Уменьшение температуры менее 780°С приводит к кристаллизации расплава хлорида калия и торможению процесса растворения фторсодержащих солей. Увеличение температуры процесса выше 800°С провоцирует нежелательный процесс анионного обмена между реагентами, а именно между фторидами легирующих металлов и хлоридом калия с образование летучих хлоридов легирующих компонентов, что описывается реакциями:
K2TiF6 + 4KCl = 6KF + TiCl4↑
K2SiF6 + 4KCl = 6KF + SiCl4↑
Испарение из расплава легирующих компонентов приводит к уменьшению их содержания в порошке стали.
Третьим существенным отличием является единовременный ввод фторсодержащих солей с последующей выдержкой расплава в течение 10-20 минут при перемешивании в изотермических условиях. Указанного времени достаточно, чтобы завершился процесс растворения фторсодержащих солей.
Уменьшение времени выдержки менее 10 минут приводит к неполноте растворения фторсодержащих солей и, как следствие, к неравномерному распределению легирующих компонентов в расплаве, что отрицательно сказывается на однородности химического состава получаемых порошков. Увеличение времени высокотемпературной выдержки расплава более 20 минут стимулирует протекание обменных реакций с образованием летучих хлоридов металлов, что приводит к снижению содержания этих металлов в порошке стали. Единовременный ввод фторсодержащих солей создает одинаковые временные условия для растворения всех вводимых легирующих компонентов. Последовательный ввод солей приводит к нежелательному увеличению времени пребывания в реакционной системе компонентов, введенных первыми, что стимулирует у них протекание обменных реакций с образованием летучих хлоридов.
Четвертым существенным отличием является перемешивание расплава со скоростью 300-360 об/мин. Данной скорости перемешивания достаточно для обеспечения хорошей гомогенизации расплава, равномерного распределения в его объеме фторсодержащих солей и получения порошка стали с однородным химическим составом. Снижение скорости перемешивания менее 300 об/мин приводит к недостаточной гомогенизации фторсодержащих солей в расплаве, а повышение скорости перемешивания более 360 об/мин - к разбрызгиванию расплава.
Процесс введения легирующих компонентов в виде фторсодержащих солей прост в аппаратурном оформлении. Введение легирующих металлов в расплав непосредственно перед операцией восстановления позволяет не только точно корректировать состав порошков, но и создавать порошки с новыми составами.
В общем случае способ получения порошка легированной стали согласно изобретению осуществляется следующим образом.
Обезжиренные отходы стали в виде стружки размером 1×0,5×0,5 мм и осушенный хлористый калий загружают в кварцевую реторту, оснащенную герметичной крышкой с газоходами, мешалкой и сифоном. Реторту устанавливают в охранный металлический стакан и помещают электрообогреваемую плавильную печь. Разогревают реторту до температуры 800-850°С, при которой происходит плавление хлорида калия. Включают мешалку. Через расплав барботируют газообразный хлор в течение 2 часов для хлорирования стальной стружки. В процессе хлорирования в расплаве накапливаются нелетучие хлориды (FeCl3, CrCl3, NiCl2 и пр.), а летучие хлориды (TiCl4, SiCl4 и пр.) испаряются из расплава и удаляются в вентиляционную систему. Полученный расплав сливают вакуумным сифоном в тигель-реактор из карбида кремния, оснащенный мешалкой и герметичной крышкой из нержавеющей стали, установленный в шахтную электрообогреваемую плавильную печь. Температуру расплава поддерживают на уровне 780-800°С. Скорость перемешивания расплава 300-360 об/мин. В расплав вводят единовременно «залпом» те легирующие компоненты, которые испарялись при хлорировании, причем их вводят в виде фторсодержащих солей (например, K2TiF6 и K2SiF6). Расплав выдерживают в течение 10-20 минут при перемешивании со скоростью 300-360 об/мин. Затем в расплав вводят восстановитель - металлический кальций для восстановления хлоридов металлов. Расплав выдерживают при перемешивании в изотермических условиях в течение 15±5 минут и выливают с помощью вакуумного сифона в приемник для охлаждения. Остывший плав извлекают из приемника, дробят и обрабатывают раствором 0,1-0,3 молярной соляной кислоты и водой. Полученный порошок стали сушат при температуре не более 40°С. Анализ содержания компонентов в порошке осуществляют атомно-эмиссионным методом с индуктивно связанной плазмой на приборе «Vista-Pro» фирмы «Varian».
Заявленное изобретение иллюстрируется примерами.
Пример 1. В хлоратор загружают обезжиренные отходы стали 12Х18Н10Т (состав, %: Cr - 18, Ni - 11, Ti - 0,8, Si - 0,5) в виде стружки размером 1×0,5×0,5 мм, массой 0,1 кг и осушенный хлористый калий в количестве 0,8 кг. Хлорирование стружки проводят при 800°С в течение 2 часов. Расплав переливают сифоном из хлоратора в тигель-реактор печи восстановления. Температуру расплава в тигле-реакторе устанавливают на уровне 800°С. Скорость перемешивания расплава 300 об/мин. В расплав вводят единовременно «залпом» 0,004 г K2TiF6 и 0,0039 г K2SiF6. Расплав выдерживают при перемешивании в изотермических условиях в течение 10 мин. Затем в расплав вводят восстановитель - металлический кальций в количестве 0,12 кг (из расчета 110% на восстановление хлоридов и фторидов металлов). Температура расплава поднимается на 30°С до 830°С за счет теплового эффекта реакции восстановления. Расплав выдерживают при перемешивании в течение 10 мин, после чего сливают вакуумным сифоном в приемник. Охлаждают расплав в приемнике до комнатной температуры. Плав извлекают из приемника, дробят до кусков размером 5-10 мм и обрабатывают раствором соляной кислоты и водой для отмывки от избытка восстановителя и солей CaCl2, CaF2, KCl. Порошок сушат на воздухе. Определенный состав порошка составляет, %: Cr - 18, Ni - 11, Ti - 0,8, Si - 0,5. Состав порошка стали соответствует марке 12Х18Н10Т.
Пример 2. В данном примере процесс получения порошка стали из отходов (стружки) стали марки 08Х17Н15М3Т (состав, %: Cr - 17, Ni - 14, Mo - 3,3, Ti - 0,5) аналогичен процессу, описанному в примере 1. Отличие заключается в том, что операцию хлорирования стружки проводят при 850°С, а введение легирующих компонентов и кальциетермическое восстановление при 780 и 810°С соответственно. Скорость перемешивания расплава 360 об/мин. Легирующие компоненты вводят в виде 0,0025 г K2TiF6 и 0,0053 г MoF3. Расплав выдерживают при перемешивании в изотермических условиях в течение 20 мин. Затем в расплав вводят восстановитель - металлический кальций в количестве 0,13 кг (из расчета 120% на восстановление хлоридов и фторидов металлов). Расплав выдерживают при перемешивании в течение 10 мин, после чего сливают вакуумным сифоном в приемник и охлаждают. Плав извлекают из приемника, дробят, обрабатывают раствором соляной кислоты и водой. Полученный порошок сушат на воздухе. Определенный состав порошка составляет, %: Cr - 17, Ni - 14, Mo - 3,4, Ti - 0,6. Состав порошка стали соответствует марке 08Х17Н15М3Т.
Пример 3. В данном примере показана возможность изменения марки стального порошка от 12Х18Н10Т до 09Х16Н15М3Б. Процесс получения порошка аналогичен процессу, описанному в примере 1 и 2. В данном примере операцию хлорирования стружки проводят при 800°С, а введение легирующих компонентов и кальциетермическое восстановление при 800 и 830°С соответственно. Скорость перемешивания расплава 300 об/мин. Перед кальциетермическим восстановлением в расплав вводят единовременно «залпом» 0,0049 г NiF2, 0,0053 г MoF3 и 0,0021 г K2NbF6. Расплав выдерживают при перемешивании в изотермических условиях в течение 15 мин. Затем в расплав вводят восстановитель - металлический кальций в количестве 0,13 кг (из расчета 120% на восстановление хлоридов и фторидов металлов). Расплав выдерживают при перемешивании в течение 10 мин, после чего сливают вакуумным сифоном в приемник и охлаждают. Плав извлекают из приемника, дробят и обрабатывают раствором соляной кислоты и водой. Порошок сушат на воздухе. Определенный состав порошка составляет, %: Cr - 16, Ni - 14, Mo - 2,7, Nb - 0,7. Состав порошка стали соответствует марке 09Х16Н15М3Б.
Анализируя данные примеров, видно, что предложенный способ позволяет получать порошки стали с заданным составом, в то время как при использовании известной технологии получаются порошки без части легирующих компонентов. Дополнительным преимуществом является возможность изменения состава порошков стали путем введения дополнительных легирующих компонентов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ РЕДКИХ МЕТАЛЛОВ | 2009 |
|
RU2416493C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОРОШКОВ ТУГОПЛАВКИХ И РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ | 2013 |
|
RU2538794C1 |
СПОСОБ ХЛОРИРОВАНИЯ РЕДКОМЕТАЛЛЬНОГО СЫРЬЯ В РАСПЛАВЕ СОЛЕЙ | 2013 |
|
RU2550404C2 |
Способ получения стального порошка с пониженным содержанием кислорода | 2015 |
|
RU2625154C2 |
СПОСОБ ПОЛУЧЕНИЯ ИНТЕРМЕТАЛЛИДА ТИТАН - АЛЮМИНИЙ В ФОРМЕ ПОРОШКА | 1994 |
|
RU2082561C1 |
СПОСОБ РАЗДЕЛЕНИЯ ТЕТРАХЛОРИДОВ ЦИРКОНИЯ И ГАФНИЯ ЭКСТРАКТИВНОЙ РЕКТИФИКАЦИЕЙ | 2013 |
|
RU2538890C1 |
СПОСОБ ПОЛУЧЕНИЯ СПЛАВОВ НА ОСНОВЕ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ, СКАНДИЯ И ИТТРИЯ | 1994 |
|
RU2061078C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-ТИТАН-БОР | 2011 |
|
RU2466202C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ "АЛЮМИНИЙ-СКАНДИЙ" (ВАРИАНТЫ) | 2017 |
|
RU2704681C2 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСКАНДИЙСОДЕРЖАЩЕЙ ЛИГАТУРЫ И ШИХТА ДЛЯ ПОЛУЧЕНИЯ АЛЮМОСКАНДИЙСОДЕРЖАЩЕЙ ЛИГАТУРЫ | 2009 |
|
RU2421537C2 |
Изобретение относится к области порошковой металлургии легированных сталей, используемых в производстве коррозионностойких и износостойких изделий методами традиционной порошковой металлургии, 3D печати, МИМ-технологий. Способ получения порошка стали включает хлорирование отходов стали в расплаве хлорида калия, кальциетермическое восстановление хлоридов металлов в расплаве, охлаждение расплава, дробление, отмывку полученного порошка стали и сушку, при этом перед восстановлением осуществляют единовременный ввод в расплав легирующих металлов в виде фторосодержащих солей при температуре 780-800°С и перемешивании расплава со скоростью 300-360 об/мин в течение 10-20 минут в изотермических условиях. Изобретение направлено на обеспечение получения порошков сталей с точным содержанием легирующих компонентов. 3 пр.
Способ получения порошка стали, включающий хлорирование отходов стали в расплаве хлорида калия, кальциетермическое восстановление хлоридов металлов в расплаве, охлаждение расплава, дробление, отмывку полученного порошка стали и сушку, отличающийся тем, что перед восстановлением осуществляют единовременный ввод в расплав легирующих металлов в виде фторосодержащих солей при температуре 780-800°С и перемешивании расплава со скоростью 300-360 об/мин в течение 10-20 минут в изотермических условиях.
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКО- И НАНОДИСПЕРСНОГО ПОРОШКА МЕТАЛЛОВ ИЛИ СПЛАВОВ | 2009 |
|
RU2423557C2 |
US 4787934 A1, 29.11.1988 | |||
US 5114471 A1, 19.05.1992 | |||
CN 105014082 A, 04.11.2015 | |||
Способ получения стального порошка из шламовых отходов | 1984 |
|
SU1275845A1 |
Авторы
Даты
2018-08-15—Публикация
2016-12-16—Подача