СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ ВОДЫ Российский патент 2018 года по МПК B01J20/04 B01J20/12 B01J20/30 

Описание патента на изобретение RU2665516C2

Изобретение относится к области промышленной экологии, а именно к способу получения сорбционного материала для очистки от ионов тяжелых металлов сточных вод, а также водоподготовки для технических нужд и питьевых целей.

Известен способ получения сорбента для очистки от ионов тяжелых металлов бытовых и сточных вод на основе природного сорбента, включающего измельченную до определенных фракций древесину, обработанную раствором минеральной кислоты. /Патент РФ №2251449, МПК B01J 20/24, 10.12.2003 г./

Недостатком данного способа является недостаточно высокая сорбционная емкость по ионам тяжелых металлов, применение окислителя и как следствие невысокая степень очистки сточных вод.

Известен способ получения сорбента для очистки от ионов тяжелых металлов сточных вод для хозяйственных и питьевых целей, заключающийся в том, что брусит природный измельчают до крупности зерен 1,5-0,6 мм или до крупности зерен 0,01-0,1 мм. /Патент РФ 2108297, МПК C02F 1/28, 27.08.1998 г./

Недостатком известного сорбента брусита природного является то, что слоистая структура брусита, обладая хорошими сорбционными свойствами, имеет низкие физико-механические свойства, поэтому брусит природный имеет небольшой срок службы и не обеспечивает высокого качества сорбции тяжелых металлов из сточных вод.

В предлагаемом изобретении эти недостатки устранены. В качестве сорбента для очистки от тяжелых металлов сточных вод, а также технической и питьевой воды при водоподготовке используется композитный материал, полученный термическим путем из отходов преимущественно местного производства шихты огнеупорной глины и брусита. Этот композитный материал представляет собой гранулы размером 0,4-2,0 мм, состоящие из алюмосиликатного каркаса из пыли огнеупорной глины, на который нанесен мелкодисперсный термически модифицированный брусит. Такое выполнение сорбента значительно увеличивает площадь сорбционной поверхности. Благодаря своей слоистой структуре термически модифицированный брусит обладает высокими селективными свойствами по отношению к катионам Cu, Zn, Al, Ni, Со, Pb, Fe, Mn, Sn, As, а алюмосиликатный каркас придает сферическим гранулам высокие механические свойства, что позволяет использовать сорбент в течение длительного периода. Стоимость термически модифицированного брусита на алюмосиликатном каркасе не высокая за счет использования отходов производства.

Технической задачей предлагаемого способа является получение сорбента для очистки сточных вод от ионов тяжелых металлов, а также водоподготовки как для технических нужд, так и для питьевых с высокими сорбционными и физико-механическими свойствами, которые увеличат срок использования, понизят стоимость производства и применения.

Техническим результатом является получение сорбента для очистки воды, а именно гранулированного термически модифицированного брусита на алюмосиликатном каркасе.

Технический результат достигается тем, что по способу получения сорбента для очистки воды, содержащего измельченный брусит, термически обработанные брусит при температуре 250-300°С и пыль от обжига глины с размером измельченных фракций 0,05-0,001 мм каждого из них смешивают в массовом соотношении 30-70% в соответствии с заданными значениями физико-механических свойств конечного продукта, засыпают в смеситель, в котором накатываются гранулы из шихты размером 0,4-2,0 мм, после этого гранулы термически обрабатывают при температуре 700-1000°С.

Сущность предлагаемого способа заключается в следующем.

Для получения предлагаемого сорбента проведены исследования по определению физико-механических свойств исходных пяти образцов: глины (пыль от обжига), шихты двух глин разных по составу (пыль от обжига), брусита (молотый) и два образца смеси указанных глин и брусита.

Хорошо изучены сорбционные способности брусита и каолинитовых глин по отношению к тяжелым металлам. Относительно брусита можно утверждать, что его поглощающая способность по отношению к тяжелым металлам очень высокая, а каолинитовые глины обладают низкой сорбционной способностью по отношению к тяжелым металлам. Однако, известные свойства каждого из указанных материалов в отдельности не отвечают поставленной задаче.

Пример 1. Для проведения опыта использовался водный раствор пятиводного медного купороса CuSO4⋅5H2O, имеющего характерную голубую окраску, так как из всех тяжелых металлов медь наиболее сильно адсорбируется бруситом.

При исследовании сорбции меди использовался исходный раствор сульфата меди при концентрации 100 г/л. Суспензия изучаемой глины или брусита, а также смесь брусита и глин перемешивалась в закрытой колбе, а затем выдерживалась в закрытом цилиндре в течение одних суток. Через сутки в равновесном растворе над осадком образовалась прозрачная часть, из которого сорбирована часть ионов меди. Чем прозрачнее раствор, тем больше меди адсорбировалось грунтом. Самый прозрачный раствор оказался в цилиндре, в который был помещен брусит. Таким образом, можно утверждать, что сорбционная емкость смесей глин и брусита меньше, чем у чистого брусита.

Пример 2. Поскольку из тяжелых металлов, плохо адсорбирующихся бруситом, отмечены марганец и никель, то в опытах также использовались водные растворы сульфатов марганца и никеля, имеющие слабо розовую и слабо зеленую окраски, что позволило для определения их концентрации применить колориметрический метод, заключающийся в определении и сравнении концентрации изучаемых тяжелых металлов в исходном и прореагировавшем с адсорбентом растворе. Результаты исследований приведены в таблице 1.

Примечание: п.о. - предел обнаружения

Как видно из представленных данных, образцы глин №1 и №2 характеризуются низкой сорбционной способностью по отношению к ионам Mn, Ni и Cu. В то же время, природный брусит образец №3 обладает довольно высокой способностью поглощать тяжелые металлы, особенно медь. Смеси анализируемых глин и природного брусита образцы №4 и №5 также проявляют более высокую сорбционную способность, чем «чистые» глины.

На основании этого опыта можно сделать вывод, чем больше в смеси массовая доля брусита, тем больше сорбционная емкость смеси. Задавая различное массовое соотношение смесей, можно таким образом регулировать величину их сорбционной емкости по отношению к тяжелым металлам.

Далее из исходных образцов глин №1 и №2 и брусита №3 были изготовлены десять искусственных смесей. Соотношение смешиваемых частей в этих образцах приведено в таблице 2.

Для этих смесей с термически модифицированным бруситом при температуре 250-300°С также были определены физико-химические свойства смесей: их сорбционная емкость по отношению к некоторым тяжелым металлам.

Пример 3. Для исследования сорбционной емкости анализируемых смесей глин и термически модифицированного брусита, они помещались в цилиндры с раствором сульфата меди при концентрации 100 г/л и взбалтывались. Через сутки отстоя по интенсивности голубой окраске прозрачной части отстоя оценивалась сорбционная емкость смеси.

Проведенные исследования сорбционной емкости смесей анализируемых исходных глин №1 и №2, составленных на основе термически модифицированного брусита, показали, что такие смеси более эффективны, чем смеси на основе природного брусита. После прокаливания брусита его сорбционная емкость заметно увеличивается.

Наибольшая сорбционная емкость проявляется у образца, представляющего собой смесь термически модифицированного брусита с глиной обр. №1 в соотношении 1:1 (по массе). Несколько меньшую сорбционную емкость имеет образец, представляющий смесь термически модифицированного брусита с глиной обр. №2 также в соотношении 1:1 (по массе). При соотношении в смесях термически модифицированного брусита и глин в соотношении 1:9 сорбционная емкость смесей заметно снижается.

По сравнению с природным бруситом сорбционная емкость смесей на его основе возрастает в десятки раз, а использование термически обработанного сорбента позволяет получить более высокие показатели сорбции при меньшем его расходе.

После термической обработки происходят некоторые изменения в химико-минеральном составе образцов глин и брусита. В интервале температур от 250-700°С обжиг брусита способствует образованию оксида магния, а при температуре 1000°С и выше образуется периклаз.

Что касается физических свойств смесей, то при нагревании меняется плотность твердой фазы брусита: от исходной равной 2,42-2,44 г/см3 после обжига при температуре выше 1000°С она повышается, приближаясь к плотности периклаза (3,43 г/см3).

При этом меняется и его удельная поверхность (Sуд): от незначительной величины около 4 м2/г при обычной температуре, она повышается до 23-24 м2/г при обжиге выше 600°С. Это также является одним из факторов, увеличивающих его сорбционную способность.

Для промышленного применения с целью обеспечения высокой скорости фильтрации и исключения вымывания сорбента из рабочего фильтра предлагаемая шихта термически модифицированного брусита и пыли от обжига глины гранулируется.

Гранулирование осуществляется следующим образом.

Гранулы предлагаемого сорбента для очистки воды накатываются из шихты, прошедших термическую обработку тонко размолотого брусита и пыли от обжига глины в пропорциях: брусит 30-70% и пыль 70-30% в зависимости от исходной задачи по сорбционной емкости и прочности гранул. Брусит для шихты проходит предварительную сушку или термообработку до температуры 250-300°С, затем размалывается до размера частиц 0,05-0,001 мм. Выбранная для предлагаемого изобретения глина Троицко-Байновского месторождения, Свердловской обл., также предварительно высушивается до гигроскопической влажности, затем подается печь для получения шамота. Образовавшаяся в процессе обжига в диапазоне от 200 до 1200°С пыль осаждается на фильтре и состоит из частиц глины размером 0,05-0,001 мм.

Шихта из термически обработанных брусита и пыли глины засыпается в смеситель, в котором осуществляется ее гранулирование до размера гранул от 0,4 мм до 2 мм. Такой размер позволяет использовать большие скорости фильтрации и предотвращает унос материала из рабочего фильтра, а за счет размера частиц брусита 0,05-0,001 мм поверхность контакта сред значительно превышает площадь поверхности гранул.

В процессе получения гранул мелкодисперсный термически модифицированный брусит, который отвечает за сорбционную емкость, послойно накатывается на отвечающий за физико-механические свойства алюмосиликатный каркас из частиц глины, а именно пыли, образовавшейся в процессе обжига. Размер частиц брусита, входящих в гранулы получаемого сорбента, определяет кратное увеличение поверхности контакта сред и, следовательно, сорбционную емкость материала.

После накатки гранулы предлагаемого сорбента проходят термическую обработку в диапазоне температур от 700 до 1000°С. Это термомодифицирует брусит, кратно увеличивая его сорбционную емкость, а также придает алюмосиликатному каркасу и в целом гранулам необходимую прочность, соответствующую ГОСТ по истираемости и измельчаемости.

Таким образом, данный способ обеспечивает получение высококачественного сорбента для очистки сточных вод от ионов тяжелых металлов, а также водоподготовки как для технических нужд, так и для питьевых целей, из термически модифицированного брусита на алюмосиликатном каркасе из пыли от обжига глины, который за счет улучшенных физико-механических свойств позволяет при меньшем объеме сорбента очистить больший объем воды, а также использовать сорбент в течение длительного периода.

Похожие патенты RU2665516C2

название год авторы номер документа
СПОСОБ АДСОРБЦИОННОЙ ОЧИСТКИ ВОД ПОВЕРХНОСТНЫХ ИСТОЧНИКОВ 2018
  • Атаева Аминат Ахмедовна
  • Кошелев Алексей Васильевич
  • Абубакарова Жарадат Сулеймановна
  • Тихомирова Елена Ивановна
RU2704438C1
Способ комплексной сорбционной очистки сточных вод 2022
  • Гималетдинов Рустем Рафаилевич
  • Усманов Марат Радикович
  • Валеев Салават Фанисович
  • Бодров Виктор Викторович
  • Овчаров Александр Александрович
  • Железняк Михаил Васильевич
  • Паскару Константин Григорьевич
  • Вежновец Виктор Павлович
RU2784984C1
Способ получения алюмосиликатного сорбента для очистки природных и сточных вод от ионов тяжелых металлов 2020
  • Уварова Анастасия Сергеевна
  • Виткалова Ирина Андреевна
  • Пикалов Евгений Сергеевич
  • Селиванов Олег Григорьевич
RU2748595C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД НА ОСНОВЕ ОТХОДОВ ГОРНО-ОБОГАТИТЕЛЬНЫХ КОМБИНАТОВ 2022
  • Деньгина Елена Александровна
  • Арасланова Ляйсан Хадисовна
  • Назаров Алексей Михайлович
RU2797375C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ ВОДЫ 2010
  • Алыков Нариман Мирзаевич
  • Алыков Евгений Нариманович
  • Алыкова Анастасия Евгеньевна
  • Абуова Галина Бекмуратовна
  • Лобанова Марина Шарифуллаевна
  • Лобанов Сергей Викторович
  • Менкеев Олег Александрович
  • Нгуэн Кхань Зуй
  • Объедкова Ольга Анатольевна
  • Павлова Анастасия Васильевна
  • Сахнова Варвара Александровна
  • Сютова Елизавета Анатольевна
  • Утюбаева Наталья Васильевна
RU2421277C1
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ФИЛЬТРОВАНИЕМ 2005
  • Гириков Олег Георгиевич
  • Бочкарев Гелий Романович
  • Кондратьев Сергей Александрович
RU2297983C1
Состав и способ получения композиционного гранулированного сорбента на основе алюмосиликатов кальция и магния 2021
  • Морозова Алла Георгиевна
  • Лонзингер Татьяна Мопровна
  • Скотников Вадим Анатольевич
RU2805663C2
СОРБЦИОННО-ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ОЧИСТКИ ВОДЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Иванов А.А.
  • Палажченко А.Ю.
  • Спевак М.А.
RU2229336C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ МНОГОКОМПОНЕНТНЫХ ЗАГРЯЗНЕНИЙ 2017
  • Игнаткина Дарья Олеговна
  • Войтюк Александр Андреевич
  • Москвичева Анастасия Владимировна
  • Москвичева Елена Викторовна
  • Геращенко Алла Анатольевна
RU2644880C1
Способ получения сорбента для извлечения соединений тяжелых металлов из сточных вод 2016
  • Обуздина Марина Владимировна
  • Руш Елена Анатольевна
  • Днепровская Анастасия Владимировна
  • Шалунц Лиана Валерьевна
  • Игнатова Ольга Николаевна
  • Леванова Екатерина Петровна
  • Грабельных Валентина Александровна
  • Розенцвейг Игорь Борисович
  • Корчевин Николай Алексеевич
RU2624319C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ ВОДЫ

Изобретение относится к области промышленной экологии, в частности к способу получения сорбционного материала для очистки сточных вод и водоподготовки. Способ получения сорбента включает следующие стадии: брусит термически обрабатывают при температуре 250-300°C, затем размалывают до размера частиц 0,05-0,001 мм и смешивают с пылью от обжига глины. Смесь засыпают в смеситель, где накатывают гранулы размером 0,4-2,0 мм. Гранулы термически обрабатывают при температуре 800-1000°C. Изобретение обеспечивает получение сорбента в виде термически модифицированного брусита на алюмосиликатном каркасе с улучшенными физико-механическими свойствами. 3 табл., 3 пр.

Формула изобретения RU 2 665 516 C2

Способ получения сорбента для очистки воды, включающий смешивание брусита с пылью от обжига глины, гранулирование и термическую обработку гранул, отличающийся тем, что брусит термически обрабатывают при температуре 250-300°C, затем размалывают до размера частиц 0,05-0,001 мм и смешивают с пылью от обжига глины в массовом соотношении 30-70% в соответствии с заданными значениями физико-механических свойств конечного продукта, засыпают в смеситель, в котором накатывают гранулы размером 0,4-2,0 мм, после этого гранулы термически обрабатывают при температуре 800-1000°C.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665516C2

В.А
КОРОЛЁВ и др
Сорбционные свойства брусита и глинистых смесей на его основе
Экология и промышленность России, 2016, т.20, 1, с
Способ использования делительного аппарата ровничных (чесальных) машин, предназначенных для мериносовой шерсти, с целью переработки на них грубых шерстей 1921
  • Меньщиков В.Е.
SU18A1
В.А
КОРОЛЁВ и др
Барьерные технологии на основе брусита для обеспечения экологической безопасности
Комплексные проблемы техносферной безопасности
Материалы Межд
научно-практ
конф
Воронеж, 2015, ч.2, с
Рельсовый башмак 1921
  • Елютин Я.В.
SU166A1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СОРБЕНТА 2011
  • Сержантов Виктор Геннадиевич
RU2462305C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО МАТЕРИАЛА И ВОДОРОДА 1995
  • Кувшинов Г.Г.
  • Могильных Ю.И.
  • Авдеева Л.Б.
  • Заварухин С.Г.
  • Коротких В.Н.
  • Кувшинов Д.Г.
  • Лихолобов В.А.
RU2108287C1
СПОСОБ ОЧИСТКИ ВОДЫ ОТ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ, ОБУСЛАВЛИВАЮЩИХ ЕЕ ЦВЕТНОСТЬ 2006
  • Бочкарев Гелий Романович
  • Пушкарева Галина Ивановна
RU2315003C1
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ФИЛЬТРОВАНИЕМ 2005
  • Гириков Олег Георгиевич
  • Бочкарев Гелий Романович
  • Кондратьев Сергей Александрович
RU2297983C1
ВИЛЕСОВ Н.Г
и др
Процессы гранулирования в промышленности
Планшайба для точной расточки лекал и выработок 1922
  • Кушников Н.В.
SU1976A1
Способ очищения сернокислого глинозема от железа 1920
  • Збарский Б.И.
SU47A1

RU 2 665 516 C2

Авторы

Панфилов Вячеслав Александрович

Юрков Алексей Вячеславович

Даты

2018-08-30Публикация

2017-02-06Подача