ОПТИЧЕСКАЯ СИСТЕМА НАВЕДЕНИЯ Российский патент 2018 года по МПК G02B23/02 

Описание патента на изобретение RU2668647C1

Изобретение относится к оптическому приборостроению и лазерной технике и может быть использовано в астрономии и для систем лазерной локации космического мусора.

Известна оптическая система наведения с параллактической монтировкой, состоящей из неподвижного телескопа и двухосного целостата (Грызулин С.И. «Юстировка оптических трактов». Монография. М. Макс Пресс, 2011, с. 80-84). В данной конструкции телескоп располагается на неподвижном основании, а наведение его визирной оси в заданную точку небесной сферы и сопровождение цели осуществляется с помощью двух зеркал, первое из которых установлено под углом 45° на выходе телескопа и имеет возможность вращения вокруг визирной оси телескопа. Второе зеркало устанавливается параллельно первому и имеет возможность вращения вокруг оси, перпендикулярной оси вращения первого зеркала.

Недостатком такой системы является использование двух зеркал, диаметр которых, по меньшей мере, в 1.4 раза превышает апертуру телескопа. Это сильно удорожает конструкцию.

Известна оптическая система наведения с горизонтальной двухосной симметричной монтировкой (Грызулин С.И. «Юстировка оптических трактов». Монография. М. Макс Пресс, 2011, с. 80-84), в которой труба телескопа расположена на карданном подвесе.

Недостатком такой конструкции является то, что труба телескопа в процессе работы изменяет свою ориентацию относительно центра тяжести телескопа, что при значительных габаритах и массе вызывает деформацию конструкции, так называемое «гнутие» трубы, что приводит к потере точности сопровождения объекта.

Известна оптическая система наведения с вертикальной трехосной параллактической монтировкой и сидеростатом (Грызулин С.И. «Юстировка оптических трактов». Монография. М. Макс Пресс, 2011, с. 80-84), которая является близкой по совокупности существенных признаков к предлагаемому изобретению и избрана в качестве прототипа. Система содержит платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе телескопом-коллиматором. Вертикальная ось системы выполнена полой для заведения лазерного излучения в телескоп-коллиматор по схеме Куде. Оптическая система наведения содержит также поворотное плоское зеркало, расположенное на выходе телескопа-коллиматора, зеркало связано с платформой и имеет возможность вращения вокруг двух взаимно перпендикулярных осей для наведения визирной оси телескопа-коллиматора в заданную точку небесной полусферы.

Недостатком прототипа с точки зрения лазерной оптики является непостоянство углов падения лазерного излучения на поворотное плоское зеркало. Это приводит к уменьшению коэффициента отражения покрытия зеркала.

Задачей данного изобретения является создание схемы оптической системы наведения, обладающей принципиальной возможностью слежения за положением объекта локации при сохранении постоянства углов падения лазерного излучения на оптические элементы и отсутствии «гнутая» элементов конструкции лазерного телескопа.

Техническим результатом изобретения является оптимизация конструкции устройства за счет снижения габаритов и массы, ее стоимости, за счет обеспечения жесткости трубы телескопа-коллиматора, за счет снижения требований к отражающему покрытию поворотного плоского зеркала.

Указанный технический результат достигается тем, что в оптической системе наведения, содержащей платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе телескопом-коллиматором, вертикальная ось системы выполнена полой для заведения лазерного излучения в телескоп-коллиматор по схеме Куде, и поворотное плоское зеркало, расположенное на выходе телескопа-коллиматора, зеркало связано с платформой и имеет возможность вращения вокруг оси, перпендикулярной вертикальной оси вращения платформы, новым является то, что поворотное плоское зеркало зафиксировано под углом 45° к визирной оси телескопа-коллиматора с сохранением этого угла при вращении вокруг оси, перпендикулярной вертикальной оси вращения платформы.

При вращении поворотного плоского зеркала вокруг оси, перпендикулярной вертикальной оси вращения платформы, углы падения излучения на это зеркало не изменяются. Этим достигается постоянство коэффициента отражения во время наведения и слежения за целью, что уменьшает потери энергии лазерного излучения при отражении от поворотного плоского зеркала и приводит к снижению требований к отражающему покрытию поворотного плоского зеркала. Отсутствие второй оси вращения поворотного плоского зеркала приводит к уменьшению массы и габаритов конструкции. Снижение требований к отражающему покрытию и отсутствие второй оси вращения поворотного плоского зеркала приводит к уменьшению стоимости системы наведения относительно прототипа. Постоянство расположения телескопа-коллиматора относительно центра силы тяжести при вращении вокруг вертикальной оси обеспечивает стабильность формы его конструкции, что положительно сказывается на качестве изображения, точности наведения и сопровождения объекта локации.

На чертеже показана схема оптической системы наведения с вертикальной двухосной монтировкой и поворотным зеркалом.

Оптическая система наведения располагается на неподвижном основании 1 и содержит платформу 3, имеющую возможность поворота вокруг вертикальной оси 2 системы, с горизонтально установленным на этой платформе телескопом-коллиматором 4 с установленным диагональным зеркалом 5, и поворотное плоское зеркало 6, расположенное на выходе телескопа-коллиматора 4. Поворотное плоское зеркало 6 связано с платформой 3 и имеет возможность вращения вокруг оси 7, перпендикулярной вертикальной оси 2 вращения платформы 3. Вертикальная ось 2 системы выполнена полой для заведения лазерного излучения в телескоп-коллиматор на диагональное зеркало 5. Поворотное плоское зеркало 6 зафиксировано под углом 45° к визирной оси телескопа-коллиматора 4 с сохранением этого угла при вращении вокруг оси, перпендикулярной вертикальной оси 2 вращения платформы.

Устройство работает следующим образом.

Лазерное излучение поступает через полую вертикальную ось 2 на диагональное зеркало 5 телескопа-коллиматора 4, расположенное на пересечении оси телескопа-коллиматора 4 и вертикальной оси 2. При поворотах платформы 3 вместе с телескопом-коллиматором 4 и зеркалом 5 углы падения излучения на зеркала телескопа остаются неизменными.

После коллимации в телескопе-коллиматоре 4 лазерное излучение попадает на поворотное плоское зеркало 6, установленное на механизме поворота вокруг горизонтальной оси 7, перпендикулярной вертикальной оси 2 вращения платформы 3. При поворотах зеркала 6 для наведения излучения на выбранную цель, углы падения излучения на это зеркало также не изменяются. Этим достигается постоянство коэффициента отражения при прохождении тракта всей системы.

Примером конкретного выполнения является оптическая система наведения, в которой на неподвижном основании установлен привод вращения вертикальной оси с датчиком угла поворота. Привод вращения выполнен в виде моментного двигателя, включающего в себя статор и ротор, соединенный с полым валом вертикальной оси, установленного в подшипниковую опору. Полый вал соединен с поворотной платформой, на которой жестко закреплен телескоп-коллиматор и поворотное плоское зеркало с приводом вращения и датчиком угла поворота. Вертикальная ось оптической системы наведения проходит вблизи центра тяжести поворотной платформы. Внутри телескопа-коллиматора на пересечении его визирной оси и вертикальной оси монтировки на опоре установлено диагональное зеркало с возможностью регулировки его положения. Телескоп-коллиматор состоит из двух софокусных параболических зеркал. Привод вращения поворотного плоского зеркала выполнен в виде моментного двигателя, включающего в себя статор и ротор, соединенный с валом, установленного в подшипниковую опору. Вал жестко связан с опорой, на которой под углом 45° к визирной оси телескопа-коллиматора установлено плоское зеркало. Оптическая система наведения снабжена устройством управления, которое получает информацию с датчиков поворота осей и подает питание моментным двигателям.

Похожие патенты RU2668647C1

название год авторы номер документа
МОБИЛЬНЫЙ ОПТИЧЕСКИЙ ТЕЛЕСКОП 2014
  • Гаранин Сергей Григорьевич
  • Смирнов Андрей Борисович
  • Потапов Владимир Фёдорович
  • Мишин Евгений Иванович
  • Бубешко Михаил Евстафьевич
RU2565355C1
ОПТИЧЕСКОЕ УСТРОЙСТВО 1997
  • Бердинских Ю.А.
  • Бурмистров В.Б.
  • Гнедой В.И.
  • Сальников Л.С.
  • Стрельцов Р.А.
  • Тружеников В.А.
  • Шаргородский В.Д.
RU2137167C1
ОПТИЧЕСКОЕ УСТРОЙСТВО 1999
  • Бердинских Ю.А.
  • Сальников Л.С.
  • Соболева Г.А.
  • Тружеников В.А.
  • Шаргородский В.Д.
  • Гришин Е.А.
RU2166783C2
ПРИЦЕЛ-ПРИБОР НАВЕДЕНИЯ С ЛАЗЕРНЫМ ДАЛЬНОМЕРОМ 2011
  • Литвяков Сергей Борисович
  • Тареев Анатолий Михайлович
  • Батюшков Валентин Вениаминович
  • Покрышкин Владимир Иванович
  • Синаторов Михаил Петрович
  • Шандора Вадим Викентьевич
  • Мышалов Павел Ильич
RU2464601C1
СПУТНИКОВАЯ ЛАЗЕРНАЯ ДАЛЬНОМЕРНАЯ СИСТЕМА 1992
  • Суетенко Александр Викторович
RU2037849C1
ОПТИЧЕСКОЕ УСТРОЙСТВО 1997
  • Бердинских Ю.А.
  • Гнедой В.И.
  • Сальников Л.С.
  • Тружеников В.А.
RU2119681C1
ОПТИЧЕСКОЕ УСТРОЙСТВО 1996
  • Бердинских Ю.А.
  • Сальников Л.С.
  • Тружеников В.А.
RU2111519C1
ОПТИЧЕСКОЕ УСТРОЙСТВО 2000
  • Бердинских Ю.А.
  • Гиммельман В.Г.
  • Гнедой В.И.
  • Сальников Л.С.
  • Стрельцов Р.А.
  • Тружеников В.А.
  • Чернышев В.П.
  • Бурмистров В.Б.
  • Рой Ю.А.
  • Шаргородский В.Д.
RU2187137C2
СПОСОБ СЛЕЖЕНИЯ ПРЕИМУЩЕСТВЕННО ТЕЛЕСКОПА ЗА ПОДВИЖНЫМ ОБЪЕКТОМ 2013
  • Потапов Владимир Фёдорович
  • Тружеников Владимир Алексеевич
  • Зайцев Борис Иванович
  • Сальников Леонид Сергеевич
  • Соболева Галина Александровна
RU2546054C1
ПАНОРАМНЫЙ ПРИБОР НАБЛЮДЕНИЯ КОМАНДИРА 2018
  • Григорьев Алексей Владимирович
  • Беляков Александр Николаевич
  • Лысеев Виктор Владимирович
  • Коровушкин Владимир Гурьевич
  • Стафеев Александр Николаевич
  • Треликов Андрей Леонидович
  • Демченко Илья Александрович
  • Васев Владимир Валерьевич
  • Сергеев Сергей Владимирович
RU2682141C1

Иллюстрации к изобретению RU 2 668 647 C1

Реферат патента 2018 года ОПТИЧЕСКАЯ СИСТЕМА НАВЕДЕНИЯ

Оптическая система наведения может быть использована в астрономии и для систем лазерной локации космического мусора. Оптическая система наведения содержит платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе телескопом-коллиматором. Вертикальная ось системы выполнена полой для заведения лазерного излучения в телескоп-коллиматор по схеме Куде. Поворотное плоское зеркало, расположенное на выходе телескопа-коллиматора, связано с платформой и имеет возможность вращения вокруг оси, перпендикулярной вертикальной оси вращения платформы. Поворотное плоское зеркало зафиксировано под углом 45° к визирной оси телескопа-коллиматора с сохранением этого угла при вращении вокруг оси, перпендикулярной вертикальной оси вращения платформы. Технический результат - снижение габаритов и массы за счет обеспечения жесткости трубы телескопа-коллиматора и снижения требований к отражающему покрытию поворотного плоского зеркала. 1 ил.

Формула изобретения RU 2 668 647 C1

Оптическая система наведения, содержащая платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе телескопом-коллиматором, вертикальная ось системы выполнена полой для заведения лазерного излучения в телескоп-коллиматор по схеме Куде, и поворотное плоское зеркало, расположенное на выходе телескопа-коллиматора, зеркало связано с платформой и имеет возможность вращения вокруг оси, перпендикулярной вертикальной оси вращения платформы, отличающаяся тем, что поворотное плоское зеркало зафиксировано под углом 45° к визирной оси телескопа-коллиматора с сохранением этого угла при вращении вокруг оси, перпендикулярной вертикальной оси вращения платформы.

Документы, цитированные в отчете о поиске Патент 2018 года RU2668647C1

Грызулин С.И., Юстировка оптических трактов, М., Макс Пресс, 2011, с
Капельная масленка с постоянным уровнем масла 0
  • Каретников В.В.
SU80A1
МОБИЛЬНЫЙ ОПТИЧЕСКИЙ ТЕЛЕСКОП 2014
  • Гаранин Сергей Григорьевич
  • Смирнов Андрей Борисович
  • Потапов Владимир Фёдорович
  • Мишин Евгений Иванович
  • Бубешко Михаил Евстафьевич
RU2565355C1
МНОГОФУНКЦИОНАЛЬНАЯ ОПТИКО-ЛОКАЦИОННАЯ СИСТЕМА 2005
  • Прилипко Александр Яковлевич
  • Павлов Николай Ильич
  • Левченко Виктор Николаевич
RU2292566C1
US 2013077161 A1, 28.03.2013
СПОСОБ ДОСТАВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ДВИЖУЩИЙСЯ ОБЪЕКТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Прилипко Александр Яковлевич
  • Павлов Николай Ильич
RU2541505C2

RU 2 668 647 C1

Авторы

Дергунов Максим Евгеньевич

Кундиков Станислав Вячеславович

Смирнов Андрей Борисович

Даты

2018-10-02Публикация

2017-09-21Подача