Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя), в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях.
Одним из классических вариантов построения буферных усилителей (БУ) являются схемы так называемых «бриллиантовых» транзисторов, которые стали основой современных аналоговых микросхем [1-22]. Предполагаемое изобретение, относящееся к данному классу устройств, имеет широкое применение, в том числе адаптировано на работу в диапазоне низких температур, что обеспечивается его схемотехникой и использованием базовых матричных кристаллов АБМК_1.3/1.4/1.7/2.1 (ОАО «Интеграл», г. Минск).
Ближайшим прототипом заявляемого устройства является буферный усилитель, представленный в патенте США №5.512.859, fig 3. (эта архитектура БУ присутствует в большем числе других патентов [1-22]). Он содержит первый 1 и второй 2 входные транзисторы разного типа проводимости, объединенные базы которых подключены ко входу устройства 3, первый 4 и второй 5 выходные транзисторы разного типа проводимости, объединенные эмиттеры которых соединены с выходом устройства 6, первая 7 цепь управления статическим режимом первого 1 входного транзистора, согласованная с первой 8 шиной источника питания, связанная с эмиттером первого 1 входного транзистора и базой второго 5 выходного транзистора, вторая 9 цепь управления статическим режимом второго 2 входного транзистора, согласованная со второй 10 шиной источника питания, связанная с эмиттером второго 2 входного транзистора и базой первого 4 выходного транзистора, первая 11 паразитная емкость, связанная с базой второго 5 выходного транзистора, вторая 12 паразитная емкость, связанная с базой первого 4 выходного транзистора, причем коллекторы первого 4 выходного и первого 1 входного транзисторов связаны со второй 10 шиной источника питания, а коллекторы второго 2 входного и второго 5 выходного транзисторов связаны с первой 8 шиной источника питания.
Существенный недостаток известного буферного усилителя состоит в том, что он имеет малую скорость нарастания выходного напряжения (ϑвых), которая обусловлена наличием паразитных емкостей в базовой цепи первого 4 и второго 5 выходных транзисторов. Как следствие, из-за нелинейных режимов работы входных транзисторов 1 и 2 при большом импульсном входном сигнале время установления переходного процесса в известном БУ имеет сравнительно большие значения. Для многих прецизионных применений БУ - это недопустимо.
Основная задача предполагаемого изобретения состоит в повышении максимальной скорости нарастания выходного напряжения и уменьшении времени установления переходного процесса в БУ при больших импульсных входных сигналах (соизмеренных с напряжением питания).
Поставленная задача достигается тем, что в буферном усилителе фиг. 1, содержащем первый 1 и второй 2 входные транзисторы разного типа проводимости, объединенные базы которых подключены ко входу устройства 3, первый 4 и второй 5 выходные транзисторы разного типа проводимости, объединенные эмиттеры которых соединены с выходом устройства 6, первая 7 цепь управления статическим режимом первого 1 входного транзистора, согласованная с первой 8 шиной источника питания, связанная с эмиттером первого 1 входного транзистора и базой второго 5 выходного транзистора, вторая 9 цепь управления статическим режимом второго 2 входного транзистора, согласованная со второй 10 шиной источника питания, связанная с эмиттером второго 2 входного транзистора и базой первого 4 выходного транзистора, первая 11 паразитная емкость, связанная с базой второго 5 выходного транзистора, вторая 12 паразитная емкость, связанная с базой первого 4 выходного транзистора, причем коллекторы первого 4 выходного и первого 1 входного транзисторов связаны со второй 10 шиной источника питания, а коллекторы второго 2 входного и второго 5 выходного транзисторов связаны с первой 8 шиной источника питания, предусмотрены новые элементы и связи - в качестве первой 7 и второй 9 цепей управления статическим режимом первого 1 и второго 2 входных транзисторов соответственно применяются инвертирующие усилители тока, причем в схему введены первый 13 и второй 14 дополнительные транзисторы разного типа проводимости, базы которых соединены со входом 3 устройства, коллектор первого 13 дополнительного транзистора соединен со входом второго 9 инвертирующего усилителя тока, эмиттер первого 13 дополнительного транзистора связан с первой 8 шиной источника питания через первый 15 дополнительный токостабилизирующий двухполюсник и подключен к выходу устройства 6 через первый 16 корректирующий конденсатор, коллектор второго 14 дополнительного транзистора соединен со входом первого 7 инвертирующего усилителя тока, эмиттер второго 14 дополнительного транзистора связан со второй 10 шиной источника питания через второй 17 дополнительный токостабилизирующий двухполюсник и подключен к выходу устройства 6 через второй 18 корректирующий конденсатор.
На чертеже фиг. 1 представлена схема буферного усилителя -прототипа, а на чертеже фиг. 2 - схема заявляемого устройства.
На чертеже фиг. 3 приведена схема заявляемого устройства в среде PSpice на транзисторах радиационно-стойкого базового матричного кристалла АБМК 1.4, допускающего работу при низких температурах.
На чертеже фиг. 4 показаны переходные процессы в заявляемом устройстве фиг. 3 при разных значениях емкости корректирующих конденсаторов С1=С18, С2=С16.
Быстродействующий буферный усилитель фиг. 2 содержит первый 1 и второй 2 входные транзисторы разного типа проводимости, объединенные базы которых подключены ко входу устройства 3, первый 4 и второй 5 выходные транзисторы разного типа проводимости, объединенные эмиттеры которых соединены с выходом устройства 6, первая 7 цепь управления статическим режимом первого 1 входного транзистора, согласованная с первой 8 шиной источника питания, связанная с эмиттером первого 1 входного транзистора и базой второго 5 выходного транзистора, вторая 9 цепь управления статическим режимом второго 2 входного транзистора, согласованная со второй 10 шиной источника питания, связанная с эмиттером второго 2 входного транзистора и базой первого 4 выходного транзистора, первая 11 паразитная емкость, связанная с базой второго 5 выходного транзистора, вторая 12 паразитная емкость, связанная с базой первого 4 выходного транзистора, причем коллекторы первого 4 выходного и первого 1 входного транзисторов связаны со второй 10 шиной источника питания, а коллекторы второго 2 входного и второго 5 выходного транзисторов связаны с первой 8 шиной источника питания. В качестве первой 7 и второй 9 цепей управления статическим режимом первого 1 и второго 2 входных транзисторов соответственно применяются инвертирующие усилители тока, причем в схему введены первый 13 и второй 14 дополнительные транзисторы разного типа проводимости, базы которых соединены со входом 3 устройства, коллектор первого 13 дополнительного транзистора соединен со входом второго 9 инвертирующего усилителя тока, эмиттер первого 13 дополнительного транзистора связан с первой 8 шиной источника питания через первый 15 дополнительный токостабилизирующий двухполюсник и подключен к выходу устройства 6 через первый 16 корректирующий конденсатор, коллектор второго 14 дополнительного транзистора соединен со входом первого 7 инвертирующего усилителя тока, эмиттер второго 14 дополнительного транзистора связан со второй 10 шиной источника питания через второй 17 дополнительный токостабилизирующий двухполюсник и подключен к выходу устройства 6 через второй 18 корректирующий конденсатор.
Рассмотрим работу заявляемого БУ фиг. 2. Статический режим схемы фиг. 2 устанавливается дополнительными токостабилизирующими двухполюсниками 15 и 17. При коэффициенте передачи по току Ki≈1 первого 7 и второго 9 инвертирующих усилителей тока статические эмиттерные токи первого 1 и второго 2 входных транзисторов будут определяться формулами
При малых входных импульсных сигналах все элементы схемы БУ работают в линейном режиме, и как следствие, БУ имеет максимально возможное быстродействие. В этом режиме переменная составляющая напряжений на первом 16 и втором 18 корректирующих конденсаторов будет близка к нулю. Так как приращение напряжений на эмиттере первого 13 дополнительного транзистора и выходе устройства 6 идентично. Поэтому эти конденсаторы не влияют на работу схемы в режиме малого сигнала.
При большом положительном импульсном входном сигнале (соизмеримом с напряжением питания) второй 2 входной транзистор запирается по цепи базы, и поэтому медленный заряд второй 12 паразитной емкости обеспечивается через второй 9 инвертирующий усилитель второго 2 входного транзистора. В этом режиме образуется большая разность напряжений между входом 3 и выходом 6 устройства, которые дифференцируются первым 16 корректирующим конденсатором. В результате через первый 16 корректирующий конденсатор формируется большой импульс тока, который передается через первый 13 дополнительный транзистор на вход второго 9 инвертирующего усилителя второго 2 входного транзистора, а затем в цепь базы первого 4 выходного транзистора. Как следствие скорость перезаряда второй 12 паразитной емкости существенно возрастает, что способствует быстрому увеличению напряжения на базе первого 4 выходного транзистора и, как следствие, выходного напряжения БУ.
По мере приближения уровня выходного напряжения uвых к уровню входного напряжения БУ uвых, приращение напряжения на первом 16 корректирующем конденсаторе, и следовательно, ток через первый 16 корректирующий конденсатор уменьшаются. В конечном итоге схема БУ входит в линейный режим - когда ток заряда второй 12 паразитной емкости уменьшается до уровня тока I]5 первого 15 дополнительного токостабилизирующего двухполюсник.
В таблице 1 приведены данные, рассчитанные по графикам фиг. 4, свидетельствующие об улучшение динамических параметров БУ фиг. 3.
Компьютерное моделирование (фиг. 4, таблица 1) показывает, что в сравнении с прототипом динамические параметры предлагаемого БУ существенно улучшаются. Так для переднего фронта время установления переходного процесса уменьшается более, чем в 800 раз, а скорость нарастания выходного напряжения также увеличивается более, чем в 800 раз. Выигрыш по динамическим параметров для заднего фронта несколько хуже, что связано с существенным отличием параметров, применяемых в схеме фиг. 3 pnp-транзисторов базового матричного кристалла АБМК_1.4 (ОАО «Интеграл», г. Минск). При использовании других идентичных npn- и pnp-транзисторов, например, нового АБМК_2.1 (ОАО «Интеграл», г. Минск) данный эффект в заявляемом устройстве не проявляется. Это связано с его высокой топологической симметрией.
Таким образом, заявляемое устройство обладает более высоким быстродействием в режиме большого сигнала.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент США №6.268.769 fig. 3
2. Патент США №6.420.933
3. Патент США №5.223.122
4. Патентная заявка США №2004/0196101
5. Патентная заявка США №2005/0264358 fig. 1
6. Патентная заявка США №2002/0175759
7. Патент США №5.049.653 fig. 8
8. Патент США №4.837.523
9. Патент США №5.179.355
10. Патент Японии JP 10.163.763
11. Патент Японии JP 10.270.954
12. Патент США №5.170.134 fig. 6
13. Патент США №4.540.950
14. Патент США №4.424.493
15. Патент Японии JP 6310950
16. Патент США №5.378.938
17. Патент США №4.827.223
18. Патент США №6.160.451
19. Патент США №4.639.685
20. А. св. СССР 1506512
21. Патент США №5.399.991
22. Патент США №6.542.032
название | год | авторы | номер документа |
---|---|---|---|
БУФЕРНЫЙ УСИЛИТЕЛЬ С ДИФФЕРЕНЦИРУЮЩЕЙ ЦЕПЬЮ КОРРЕКЦИИ ПЕРЕХОДНОГО ПРОЦЕССА | 2018 |
|
RU2673003C1 |
БЫСТРОДЕЙСТВУЮЩИЙ БУФЕРНЫЙ УСИЛИТЕЛЬ | 2018 |
|
RU2674885C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2018 |
|
RU2676014C1 |
КОМПЛЕМЕНТАРНЫЙ БУФЕРНЫЙ УСИЛИТЕЛЬ | 2011 |
|
RU2444115C1 |
КАСКОДНЫЙ СВЧ-УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ ПИТАНИЯ | 2011 |
|
RU2460206C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ПОВЫШЕННЫМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ ПО НАПРЯЖЕНИЮ | 2011 |
|
RU2439783C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ДИФФЕРЕНЦИРУЮЩЕЙ ЦЕПЬЮ КОРРЕКЦИИ | 2018 |
|
RU2669075C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ | 2017 |
|
RU2668968C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2009 |
|
RU2412529C1 |
Быстродействующий операционный усилитель | 2023 |
|
RU2810548C1 |
Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя) в структуре аналоговых микросхем различного функционального назначения, например операционных усилителях. Технический результат: повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса в БУ при больших импульсных входных сигналах. Быстродействующий буферный усилитель содержит первый и второй входные транзисторы разного типа проводимости, первый и второй выходные транзисторы разного типа проводимости, первую цепь управления статическим режимом первого входного транзистора, вторую цепь управления статическим режимом второго входного транзистора, первую паразитную емкость, вторую паразитную емкость. В качестве первой и второй цепей управления статическим режимом первого и второго входных транзисторов соответственно применяются инвертирующие усилители тока, в схему введены первый и второй дополнительные транзисторы разного типа проводимости, первый дополнительный токостабилизирующий двухполюсник и второй дополнительный токостабилизирующий двухполюсник. 4 ил.
Быстродействующий буферный усилитель, содержащий первый (1) и второй (2) входные транзисторы разного типа проводимости, объединенные базы которых подключены ко входу устройства (3), первый (4) и второй (5) выходные транзисторы разного типа проводимости, объединенные эмиттеры которых соединены с выходом устройства (6), первая (7) цепь управления статическим режимом первого (1) входного транзистора, согласованная с первой (8) шиной источника питания, связанная с эмиттером первого (1) входного транзистора и базой второго (5) выходного транзистора, вторая (9) цепь управления статическим режимом второго (2) входного транзистора, согласованная со второй (10) шиной источника питания, связанная с эмиттером второго (2) входного транзистора и базой первого (4) выходного транзистора, первая (11) паразитная емкость, связанная с базой второго (5) выходного транзистора, вторая (12) паразитная емкость, связанная с базой первого (4) выходного транзистора, причем коллекторы первого (4) выходного и первого (1) входного транзисторов связаны со второй (10) шиной источника питания, а коллекторы второго (2) входного и второго (5) выходного транзисторов связаны с первой (8) шиной источника питания, отличающийся тем, что в качестве первой (7) и второй (9) цепей управления статическим режимом первого (1) и второго (2) входных транзисторов соответственно применяются инвертирующие усилители тока, причем в схему введены первый (13) и второй (14) дополнительные транзисторы разного типа проводимости, базы которых соединены со входом (3) устройства, коллектор первого (13) дополнительного транзистора соединен со входом второго (9) инвертирующего усилителя тока, эмиттер первого (13) дополнительного транзистора связан с первой (8) шиной источника питания через первый (15) дополнительный токостабилизирующий двухполюсник и подключен к выходу устройства (6) через первый (16) корректирующий конденсатор, коллектор второго (14) дополнительного транзистора соединен со входом первого (7) инвертирующего усилителя тока, эмиттер второго (14) дополнительного транзистора связан со второй (10) шиной источника питания через второй (17) дополнительный токостабилизирующий двухполюсник и подключен к выходу устройства (6) через второй (18) корректирующий конденсатор.
US 5512859A1, 30.04.1996 | |||
ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2009 |
|
RU2412535C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2009 |
|
RU2412537C1 |
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2015 |
|
RU2615066C1 |
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2005 |
|
RU2280318C1 |
US 6268769 B1, 30.07.2001 | |||
US 5179355 A1, 12.01.1993 | |||
US 6542032 B2, 01.04.2003. |
Авторы
Даты
2018-10-05—Публикация
2017-11-09—Подача