Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков.
В современной радиоэлектронной аппаратуре, приборостроении и измерительной технике находят применение быстродействующие операционные усилители (ОУ), которые определяют динамические параметры многих аналоговых интерфейсов, АЦП, драйверов линий связи и т.п.
Методам повышения максимальной скорости нарастания выходного напряжения ОУ (SR) с различной архитектурой посвящено значительное количество патентов, монографий и статей, в т.ч. [1-4].
В современной микроэлектронике широкое распространение получили операционные усилители с трехкаскадной архитектурой, которая включает комплементарный входной дифференциальный каскад (ДК), два токовых зеркала и буферный усилитель [1-4]. Известны сотни патентов, использующих данное техническое решение, в т.ч. [5-43]. Предполагаемое изобретение относится к данному классу устройств.
Ближайшим прототипом (фиг. 1) заявляемого устройства является ОУ по патенту США № 6.268.769, fig.3. Он содержит (фиг. 1) первый 1 и второй 2 входные транзисторы разного типа проводимости, объединенные базы которых подключены к инвертирующему входу 3 устройства, третий 4 и четвертый 5 входные транзисторы разного типа проводимости, базы которые объединены и подключены к неинвертирующему входу 6 устройства, первый 7 токостабилизирующий двухполюсник, включенный между первой 8 шиной источника питания и объеденными эмиттерами второго 2 и четвертого 5 входных транзисторов, второй 9 токостабилизирующий двухполюсник включенный между второй 10 шиной источника питании и объеденными эмиттерами первого 1 и третьего 4 входных транзисторов, первое 11 токовое зеркало, согласованное с первой 8 шиной источника питания, вход которого подключен к коллектору третьего 4 входного транзистора, а выход соединен со входом буферного усилителя 12 и первым 13 корректирующим конденсатором, второе 14 токовое зеркало, согласованное со второй 10 шиной источника питания, вход которого соединен с коллектором четвертого 5 входного транзистора, а выход подключен ко входу буферного усилителя 12, выход которого является выходом устройства 15.
Существенный недостаток известного ОУ состоит в том, что при его инвертирующем включении с резисторами общей отрицательной обратной связи [1-4] он имеет невысокую скорость нарастания выходного напряжения в режиме большого сигнала (SR). Это обусловлено малыми значениями токов перезаряда первого 13 корректирующего конденсатора ОУ, которые жестко связаны с током первого 7 и второго 9 токостабилизирующих двухполюсников. Эти токи не могут выбираться большими из-за их существенного влияния на входные токи ОУ и его входное дифференциальное сопротивление.
Основная задача предполагаемого изобретения состоит в повышении SR без ухудшения энергетических параметров ОУ в статическом режиме.
Поставленная задача достигается тем, что в операционном усилителе фиг.1, содержащем первый 1 и второй 2 входные транзисторы разного типа проводимости, объединенные базы которых подключены к инвертирующему входу 3 устройства, третий 4 и четвертый 5 входные транзисторы разного типа проводимости, базы которые объединены и подключены к неинвертирующему входу 6 устройства, первый 7 токостабилизирующий двухполюсник, включенный между первой 8 шиной источника питания и объеденными эмиттерами второго 2 и четвертого 5 входных транзисторов, второй 9 токостабилизирующий двухполюсник включенный между второй 10 шиной источника питании и объеденными эмиттерами первого 1 и третьего 4 входных транзисторов, первое 11 токовое зеркало согласованное с первой 8 шиной источника питания, вход которого подключен к коллектору третьего 4 входного транзистора, а выход соединен со входом буферного усилителя 12 и первым 13 корректирующим конденсатором, второе 14 токовое зеркало, согласованное со второй 10 шиной источника питания, вход которого соединен с коллектором четвертого 5 входного транзистора, а выход подключен ко входу буферного усилителя 12, выход которого, является выходом устройства 15, предусмотрены новые элементы и связи – в схему введены объединенные эмиттеры второго 2 и четвертого 5 входных транзисторов связаны со входом первого 11 токового зеркала через второй 16 корректирующий конденсатор, а объединенные эмиттеры первого 1 и третьего 4 входных транзисторов связаны со входом второго 14 токового зеркала через третий 17 корректирующий конденсатор.
На чертеже фиг. 1 показана схема прототипа ОУ, а на чертеже фиг. 2 – схема заявляемого устройства.
На чертеже фиг. 3 приведена схема заявляемого ОУ фиг. 2 в среде PSpice на моделях интегральных транзисторов АО «НПП» Пульсар» при введение общей отрицательной обратной связи через резисторы R3 и R2.
На чертеже фиг. 4 представлен переходный процесс ОУ фиг. 3 при емкости первого 13 корректирующего конденсатора Сk1(С13)=1,5пФ, амплитуде входного напряжения Uвх(+)=5В и различных значениях емкостей второго 16 и третьего 17 корректирующих конденсаторов Сk2(С16)=Сk3(С17)=Сvar=0;1;2;5;13пФ.
На чертеже фиг. 5 приведены амплитудно-частотные характеристики (АЧХ) разомкнутого ОУ фиг. 3 при емкости первого 13 корректирующего конденсатора Сk1(С13)=1,5пФ и различных значениях емкостей второго 16 и третьего 17 корректирующих конденсаторов Сk2(С16)=Сk3(С17)=Сvar=0;1;2;5;13пФ, а на чертеже фиг. 6 – АЧХ разомкнутого ОУ фиг. 5 в увеличенном масштабе.
Быстродействующий операционный усилитель фиг. 2 содержит первый 1 и второй 2 входные транзисторы разного типа проводимости, объединенные базы которых подключены к инвертирующему входу 3 устройства, третий 4 и четвертый 5 входные транзисторы разного типа проводимости, базы которые объединены и подключены к неинвертирующему входу 6 устройства, первый 7 токостабилизирующий двухполюсник, включенный между первой 8 шиной источника питания и объеденными эмиттерами второго 2 и четвертого 5 входных транзисторов, второй 9 токостабилизирующий двухполюсник включенный между второй 10 шиной источника питании и объеденными эмиттерами первого 1 и третьего 4 входных транзисторов, первое 11 токовое зеркало, согласованное с первой 8 шиной источника питания, вход которого подключен к коллектору третьего 4 входного транзистора, а выход соединен со входом буферного усилителя 12 и первым 13 корректирующим конденсатором, второе 14 токовое зеркало, согласованное со второй 10 шиной источника питания, вход которого соединен с коллектором четвертого 5 входного транзистора, а выход подключен ко входу буферного усилителя 12, выход которого, является выходом устройства 15. В схему введен объединенные эмиттеры второго 2 и четвертого 5 входных транзисторов связаны со входом первого 11 токового зеркала через второй 16 корректирующий конденсатор, а объединенные эмиттеры первого 1 и третьего 4 входных транзисторов связаны со входом второго 14 токового зеркала через третий 17 корректирующий конденсатор.
Рассмотрим работу предлагаемого ОУ фиг. 2 при его инвертирующем включении в соответствии со схемой фиг. 3.
Статический режим схемы фиг. 2 устанавливается первым 7 и вторым 9 токостабилизирующими двухполюсниками. Первый 13 корректирующий конденсатор обеспечивает устойчивость ОУ при введении общей отрицательной обратной связи на его первый 3 инвертирующий вход.
Второй 16 и третий 17 корректирующие конденсаторы, из-за их крайне малых постоянных времени, практически не влияют на работу ОУ в существенной полосе частот (до частоты единичного усиления f1). Об этом свидетельствует малосигнальная амплитудно-частотная характеристика разомкнутого ОУ, представленная на чертежах фиг. 5 и фиг. 6.
Если на первый 3 инвертирующий вход ОУ фиг. 2 поступает большой импульсный сигнал
Если динамическая ошибка
Таблица 1 – Взаимосвязь максимальной скорости нарастания выходного напряжения ОУ фиг. 3 и емкостей второго 16 и третьего 17 корректирующих конденсаторов Сk2(С16)=Сk3(С17)=Сvar=0;1;2;5;13пФ, при амплитуде входного импульсного сигнала Uвх(+)=5В, t=27°С
Сk2(С16)=Сk3(С17)=Сvar (пФ)
Применение к качестве активных элементов схемы фиг. 2 базовых матричных кристаллов АБМК_1.3/1.7 [44] позволяет обеспечить работоспособность ОУ при низких температурах и условиях воздействия радиации.
Таким образом, в сравнении с ОУ-прототипом предлагаемое устройство обладает существенными преимуществами по динамическим параметрам в режиме большого сигнала. При этом, данный положительный эффект обеспечивается за счет введения в схему двух корректирующих конденсаторов 16 и 17 сравнительно небольшой емкости и не требует увлечения тока потребления ОУ в статическом режиме.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. I.M. Filanovsky, V.V. Ivanov, “Operational Amplifier Speed and Accuracy Improvement: Analog Circuit Design with Structural Methodology,” Kluwer Academic Publishers, New York, Boston, Dordrecht, London, 2004, 194 p.
2. Операционные усилители с непосредственной связью каскадов: монография / Анисимов В.И., Капитонов М.В., Прокопенко Н.Н., Соколов Ю.М. - Л.: «Энергия», 1979. - 148 с.
3. Прокопенко, Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей: монография / Н.Н. Прокопенко, А.С. Будяков. – Шахты: Изд-во ЮРГУЭС, 2006. – 231 с.
4. Прокопенко Н.Н. Нелинейная активная коррекция в прецизионных аналоговых микросхемах (монография) // Ростов-на-Дону: Изд-во Северо-Кавказского научного центра высшей школы, 2000. 222с.
5. Патент США № 6.268.769 fig.3
6. Патент США № 4.636.743
7. Патент США № 5.512.859 fig.1
8. Патент США № 3.974.455
9. Патент США № 5.291.149
10. Патент США № 5.374.897
11. Патент США № 4.241.315 fig.5
12. Патент США № 4.783.637
13. Заявка на патент США № 2004/0174216 fig.2
14. Патент США № 6.844.781 В1
15. Патентная заявка US № 2006/0226908
16. Патентная заявка US № 2006/0125522
17. Патентная заявка US № 2003/0206060
18. Авт. свид. СССР № 530425
19. Патент США № 4.757.273
20. Патентная заявка США № 2001/0052818 A1
21. Патент США № 5.729.177
22. Патент США № 6.642.789
23. Патент США № 6.628.168 В2
24. Патент США № 4.463.319
25. Патент США № 6.696.894 В1
26. Патент США № 4.377.789
27. Патент США № 6.794.940 В2
28. Патент WO № 98/00911
29. Патентная заявка США № 2005/0024140A1
30. Патент США № 5.814.953
31. Патент США № 5.225.791
32. Патент США № 3.968.451, fig.7
33. Патент SU № 1220105
34. Авт. свид. СССР № 611288
35. Патент США № 5.515.005
36. Патент Франции № 2.224.932
37. Патент Японии № 53-25-232
38. Патент РФ № 2.193.273
39. Патент США № 4.600.893, фиг. 3.
40. Патент США № 4.837.522, фиг. 1
41. Пилипенко, А.Н. Особенности построения широкополосного операционного усилителя с параллельным каналом на основе комплементарной высокочастотной биполярной технологии: Материалы научно-технической конференции: «Твердотельная электроника. Сложные функциональные блоки РЭА» [Текст] // А.Н. Пилипенко, А.А Лебедев. - М.: МНТОРЭС им. А.С.Попова, 2009, с. 35-37.
42. Справочник: операционные усилители и компараторы (Авербух В.Д. и др.). – М.: Изд-во «Додэка-XXI», 2001, С.122 (НА2539).
43. Матавкин В.В. Быстродействующие операционные усилители. – М.: Радио и связь, 1989, стр. 103, рис. 6. 11 (ОУ НА5190).
44. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski, "The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors," 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507.
название | год | авторы | номер документа |
---|---|---|---|
Быстродействующий операционный усилитель с повышенной скоростью нарастания выходного напряжения | 2018 |
|
RU2683160C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ДИФФЕРЕНЦИРУЮЩИМИ ЦЕПЯМИ КОРРЕКЦИИ | 2018 |
|
RU2684500C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ДИФФЕРЕНЦИРУЮЩЕЙ ЦЕПЬЮ КОРРЕКЦИИ | 2018 |
|
RU2669075C1 |
БЫСТРОДЕЙСТВУЮЩИЙ БУФЕРНЫЙ УСИЛИТЕЛЬ | 2018 |
|
RU2674885C1 |
Многоканальный быстродействующий операционный усилитель | 2018 |
|
RU2683851C1 |
Операционный усилитель с повышенной максимальной скоростью нарастания выходного напряжения | 2023 |
|
RU2810544C1 |
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ | 2017 |
|
RU2668968C1 |
Быстродействующий операционный усилитель с дифференцирующей цепью коррекции переходного процесса | 2023 |
|
RU2811071C1 |
МНОГОКАНАЛЬНЫЙ БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2016 |
|
RU2626667C1 |
Быстродействующий дифференциальный операционный усилитель | 2018 |
|
RU2688227C1 |
Изобретение относится к области радиотехники. Технический результат: повышение скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен операционный усилитель, который содержит четыре входных транзистора, первый двухполюсник, включенный между первой шиной и эмиттерами второго и четвертого транзисторов, второй двухполюсник, включенный между второй шиной и эмиттерами первого и третьего транзисторов, первое токовое зеркало, вход которого подключен к коллектору третьего транзистора, а выход соединен со входом буферного усилителя и первым корректирующим конденсатором, второе токовое зеркало, вход которого соединен с коллектором четвертого транзистора, а выход подключен ко входу буферного усилителя, выход которого является выходом устройства. Эмиттеры второго и четвертого транзисторов связаны с первым токовым зеркалом через второй корректирующий конденсатор, а эмиттеры первого и третьего транзисторов связаны со вторым токовым зеркалом через третий корректирующий конденсатор. 6 ил., 1 табл.
Быстродействующий операционный усилитель, содержащий первый (1) и второй (2) входные транзисторы разного типа проводимости, объединенные базы которых подключены к инвертирующему входу (3) устройства, третий (4) и четвертый (5) входные транзисторы разного типа проводимости, базы которых объединены и подключены к неинвертирующему входу (6) устройства, первый (7) токостабилизирующий двухполюсник, включенный между первой (8) шиной источника питания и объеденными эмиттерами второго (2) и четвертого (5) входных транзисторов, второй (9) токостабилизирующий двухполюсник, включенный между второй (10) шиной источника питании и объеденными эмиттерами первого (1) и третьего (4) входных транзисторов, первое (11) токовое зеркало, согласованное с первой (8) шиной источника питания, вход которого подключен к коллектору третьего (4) входного транзистора, а выход соединен с входом буферного усилителя (12) и первым (13) корректирующим конденсатором, второе (14) токовое зеркало, согласованное со второй (10) шиной источника питания, вход которого соединен с коллектором четвертого (5) входного транзистора, а выход подключен к входу буферного усилителя (12), выход которого является выходом устройства (15), отличающийся тем, что объединенные эмиттеры второго (2) и четвертого (5) входных транзисторов связаны с входом первого (11) токового зеркала через второй (16) корректирующий конденсатор, а объединенные эмиттеры первого (1) и третьего (4) входных транзисторов связаны с входом второго (14) токового зеркала через третий (17) корректирующий конденсатор.
US 6268769 B1, 31.07.2001 | |||
US 5512859 A1, 30.04.1996 | |||
МНОГОКАНАЛЬНЫЙ БЫСТРОДЕЙСТВУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ | 2016 |
|
RU2626667C1 |
Управляемый операционный усилитель | 1985 |
|
SU1272473A1 |
Авторы
Даты
2018-12-25—Публикация
2018-03-14—Подача