СПОСОБ ИЗГОТОВЛЕНИЯ ИОНООБМЕННОЙ ДВУХСЛОЙНОЙ МЕМБРАНЫ Российский патент 2018 года по МПК B01D67/00 

Описание патента на изобретение RU2670300C1

Изобретение относится к мембранной технике, в частности к способам получения ионообменных асимметричных мембран с улучшенными электрохимическими характеристиками, и может найти применение, например, в топливных элементах, электродиализных аппаратах, сенсорных устройствах, а также в качестве мембранных диодов.

Известен способ получения композитной ионообменной мембраны, состоящей из перфторированной сульфокатионитовой ионообменной мембраны (Nafion) и слоя полианилина, образованного путем последовательного воздействия 1 М раствора протонированного анилина в течение 1 часа и инициатора полимеризации 0,1 М персульфата аммония (NH4)2S2O8 в течение 1 часа (S.Tan, D.Belanger Characterization and transport properties of Nafion/polyaniline composite membranes // J. Phys. Chem. 2005, V. 109, p. 23480-23490). Недостаток известного способа заключается в том, что описываемое техническое решение обеспечивает градиентное распределение слоя полианилина, однако, в данном случае, не достигается асимметрия транспортных свойств.

Известен способ получения композитной мембраны с фиксированной толщиной слоя полианилина, включающий синтез полианилина в матрице путем последовательного воздействия 1 М раствора протонированного анилина (C6H5NH3+) в течение 1 ч и инициатора полимеризации 0,1 М персульфата аммония (NH4)2S2O8 в течение 1 ч. При этом в качестве исходной матрицы берут инертную непроводящую пленку сополимера тетрафторэтилена и перфтор(3,6-диокса-4-метил-7-октен)сульфонилфторида и подвергают кипячению в растворе 10% NaOH в течение 10-40 мин, с образованием заряженного сульфированного слоя в полученной пленке, которую отмывают дистиллированной водой, переводят в Н+-форму, для последующего осуществления синтеза полианилина в заряженном сульфированном слое, а затем кипятят в водном растворе аммиака, для мягкого щелочного омыления оставшейся инертной непроводящей пленки сополимера тетрафторэтилена и перфтор(3,6-диокса-4-метил-7-октен)сульфонилфторида. (RU №2481885, 2013). При этом известное техническое решение обеспечивает градиентное распределение слоя полианилина, однако, в данном случае, не достигается асимметрия транспортных свойств.

Более близким к описываемому изобретению является способ получения композиционной ионообменной мембраны, модифицированной градиентно распределенными по толщине мембраны наночастицами допанта, причем в качестве допанта используют мелкодисперсный гидратированный кислый фосфат циркония Zr(HPO4)2⋅H2O, или мелкодисперсный гидратированный оксид циркония ZrO2 H2O, или мелкодисперсный гидратированный оксид кремния SiO2H2O, или мелкодисперсный полианилин. При этом градиентное распределение неорганического допанта получают путем его синтеза непосредственно в полимерной матрице, в которую вводят один из компонентов синтезируемого допанта, а вторым компонентом обрабатывают одну из поверхностей полимерной матрицы (RU №2352384, 2009). Недостатком известного решения является деструкция основного слоя мембраны, обусловленная проникновением второго слоя мембраны в первый, приводящая к образованию микротрещин в структуре, следствием чего является увеличение коэффициента диффузионной проницаемости. Последнее отражается на стабильности структуры мембраны и приводит к снижению воспроизводимости ее транспортных свойств.

Вышесказанное негативно отражается при использовании мембран в топливных элементах, электродиализных аппаратах, сенсорных устройствах, а также в качестве мембранных диодов.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является обеспечение воспроизводимости характеристик мембраны при многократном использовании с одновременной возможностью регулирования степени асимметрии диффузионной проницаемости.

Указанная техническая проблема решается описываемым способом изготовления ионообменной двухслойной мембраны, заключающимся в том, что раствор перфторсульфополимера в литиевой форме в растворителе -диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха, затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны, после чего смешивают раствор перфторсульфополимера в литиевой форме в растворителе -диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл с получением суспензии, на полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм., затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя.

Технический результат достигается за счет формирования четкой межфазной границы слоев мембраны, обеспечивающей высокое физическое сродство слоев мембраны, следствием чего является достижение низких значений коэффициента диффузионной проницаемости.

Описываемый способ изготовления ионообменной двухслойной мембраны проводят следующим образом.

Раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе - диметилформамиде с массовой долей в растворе 7,2% объемом 15-25 мл заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. Затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны.

Далее смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита, взятый в количестве, предпочтительно, 1-10% от массы используемого перфторсульфополимера и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл с получением суспензии.

На полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм. Данные условия проведения распыления приводят к предотвращению растворения первого слоя мембраны растворителем, содержащимся в указанной суспензии.

Затем полученную двухслойную мембрану высушивают при температуре 80-120°С до достижения постоянной массы мембраны. При этом удаляется остаточный растворитель. Указанное высушивание проводят в течение 1-5 часов. Затем сформированную двухслойную мембрану удаляют с поверхности стеклянной формы. Проведение описываемого способа вышеуказанным образом приводит к получению двухслойной мембраны с толщиной первого слоя, превышающей толщину второго слоя.

Варьируя соотношения толщин слоев мембраны можно регулировать степень асимметрии диффузионной проницаемости, что обусловлено несимметричным распределением концентрации электролита в слоях мембраны при разной ориентации мембраны по отношению к потоку электролита. Несимметричные профили концентрации являются следствием различия в коэффициентах диффузии и равновесного распределения молекул электролита в слоях, а также разных обменных емкостей слоев. Изменения соотношения толщин слоев выбирается в зависимости от цели использования мембраны. Например, мембрана с коэффициентами диффузионной проницаемости, достигнутыми описываемым способом, с толщиной первого слоя, превышающей толщину второго слоя в 4-5 раз может использоваться в сенсорных устройствах.

Ниже представлены примеры, иллюстрирующие, но не ограничивающие описываемый способ.

Пример 1.

Раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 20 мл помещают в стеклянную форму с плоским дном и выдерживают в течение 2 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. После этого форму с жидкостью нагревают при температуре 80°С до полного испарения растворителя с получением первого слоя мембраны.

Затем раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 4 мл смешивают с модификатором - нанотрубками галлуазита, взятых в количестве 2,0% от массы используемого перфторсульфополимера и дополнительной порцией растворителя диметилформамида объемом 4 мл для снижения вязкости начального раствора с получением суспензии. Далее на первый слой мембраны, нагретый до температуры 80°С с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1 мл/мин при давлении 1,5атм. Затем образованную двухслойную мембрану высушивают при температуре 120°С в течение часа до достижения постоянной массы мембраны за счет удаления остаточного растворителя и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану. При этом получают ионообменную двухслойную мембрану, имеющую толщину первого слоя, превышающую толщину второго слоя в 5раз.

Для доказательства асимметрии диффузионной проницаемости полученной мембраны проведены электрохимические измерения в измерительной диффузионной ячейке в зависимости от положения мембраны по отношению к направлению потока электролита (NaCl), и на основании математической модели переноса электролита через бислойную мембрану (Filippov, A.N.; Starov, V.M.; Kononenko, N.A.; Berezina, N.P. Asymmetry of diffusion permeability of bi-layer membranes. Adv. Colloid Interface Sci. 2008, 139, 29-44) найдены коэффициенты диффузии и равновесного распределения его молекул в слоях.

Пример 2.

Раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 15 мл помещают в стеклянную форму с плоским дном и выдерживают в течение 4 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. После этого форму с жидкостью нагревают при температуре 60°С до полного испарения растворителя с получением первого слоя мембраны.

Затем раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 6 мл смешивают с модификатором - нанотрубками галлуазита, взятых в количестве 1,0% от массы используемого перфторсульфополимера и дополнительной порцией растворителя диметилформамида объемом 6 мл для снижения вязкости начального раствора с получением суспензии. Далее на первый слой мембраны, нагретый до температуры 60°С с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1 мл/мин при давлении 1,5 атм. Затем образованную двухслойную мембрану высушивают при температуре 120°С в течение часа до достижения постоянной массы мембраны за счет удаления остаточного растворителя и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану.

При этом получают ионообменную двухслойную мембрану, имеющую толщину первого слоя, превышающую толщину второго слоя в 3 раза.

Для доказательства асимметрии диффузионной проницаемости полученной мембраны проведены электрохимические измерения в измерительной диффузионной ячейке в зависимости от положения мембраны по отношению к направлению потока электролита (NaCl) и на основании математической модели переноса электролита через данную бислойную мембрану найдены коэффициенты диффузии и равновесного распределения его молекул в слоях.

В Таблице 1 приведены значения коэффициентов диффузии молекулы электролита NaCl (мкм2/с) в слоях композиционных ионообменных мембран: индекс (1) относится к модифицированному (более тонкому) слою мембраны, индекс (2) - к немодифицированному (более толстому) слою мембраны.

В Таблице 2 приведены значения интегральных коэффициентов диффузионной проницаемости, полученные при различном положении мембраны примера 1 в измерительной ячейке: «s» означает ориентацию модифицированного и более тонкого слоя к раствору электролита, «w» -ориентацию модифицированного и более тонкого слоя к камере с чистой водой, при различной концентрации раствора NaCl.

Как видно из полученных данных, композиционные ионообменные мембраны обладают асимметрией диффузионной проницаемости, т.е. неэквивалентными транспортными свойствами в разных направлениях при диффузии раствора NaCl через них.

Асимметричные по диффузионной проницаемости мембраны обладают асимметрией и других транспортных свойств, в частности, вольтамперной характеристики (ВАХ). Так, на нижеприведенной фиг. 1 показаны вольтамперные кривые, полученные при различном положении мембраны (пример 1) в электродиализной ячейке, где «s» - ориентация модифицированного (более тонкого) слоя к аноду, «w» - ориентация данного слоя к катоду.

В таблице 3 приведены значения параметров вольтамперных кривых мембраны по примеру 1, свидетельствующие об асимметрии ВАХ.

Как видно из представленной фиг.1 и таблицы 3, отношение предельных токов и длин их плато на вольтамперной кривой составляет 0,86, что свидетельствует о степени асимметрии этих характеристик равной 14%. Степень асимметрии наклона омического участка несколько ниже - 7%, как и степень асимметрии наклона запредельного участка, которая составляет около 12%. Таким образом, указанные данные подтверждают, что синтезированная мембрана обладает также и асимметрией ВАХ.

Из сравнения данных, представленных в таблице 2 и данных, указанных в известном способе получения мембраны, при концентрации 0,1 М NaCl следует, что интегральный коэффициент диффузионной проницаемости для мембраны, полученной согласно известному способу, составляет Ps=138 мкм2/с и Pw=187 мкм2/с, а для мембраны, полученной по способу согласно описываемому изобретению - Ps=5.84 мкм2/с и Pw=5.23 мкм2/с. Таким образом, значения интегрального коэффициента диффузионной проницаемости для мембраны, полученной описываемым способом, существенно ниже.

Осуществление описываемого способа с применением иных режимных условий, входящих в оговоренные выше интервалы приводит к аналогичным результатам.

Таким образом, проведение описываемого способа позволяет получить ионообменную двухслойную мембрану, имеющую более низкие значения коэффициента диффузионной проницаемости по сравнению с мембраной, полученной известным способом.

Похожие патенты RU2670300C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ИОНООБМЕННОЙ ДВУХСЛОЙНОЙ МЕМБРАНЫ 2021
  • Петрова Дарья Андреевна
  • Филиппов Анатолий Николаевич
  • Кононенко Наталья Анатольевна
  • Лагутин Павел Геннадьевич
RU2782631C1
КОМПОЗИЦИОННАЯ ИОНООБМЕННАЯ МЕМБРАНА 2007
  • Воропаева Екатерина Юрьевна
  • Ильина Анна Александровна
  • Шалимов Александр Сергеевич
  • Пинус Илья Юрьевич
  • Стенина Ирина Александровна
  • Ярославцев Андрей Борисович
RU2352384C1
КОМПОЗИЦИОННАЯ ИОНООБМЕННАЯ МЕМБРАНА 2009
  • Шкирская Светлана Алексеевна
  • Сычева Анна Абдул-Рахмановна
  • Березина Нинель Петровна
  • Тимофеев Сергей Васильевич
  • Криштопа Мария Викторовна
RU2411070C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОЙ МЕМБРАНЫ С ФИКСИРОВАННОЙ ТОЛЩИНОЙ СЛОЯ ПОЛИАНИЛИНА 2012
  • Березина Нинель Петровна
  • Шкирская Светлана Алексеевна
  • Колечко Мария Викторовна
  • Тимофеев Сергей Васильевич
RU2481885C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОЙ АНИЗОТРОПНОЙ КАТИОНООБМЕННОЙ МЕМБРАНЫ 2014
  • Долгополов Сергей Владимирович
  • Лоза Наталья Владимировна
  • Кононенко Наталья Анатольевна
  • Лоза Сергей Алексеевич
  • Андреева Марина Александровна
  • Фалина Ирина Владимировна
RU2574453C1
КОМПОЗИТНАЯ НАНОМОДИФИЦИРОВАННАЯ ПЕРФТОРСУЛЬФОКАТИОНИТОВАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2012
  • Григорьев Сергей Александрович
  • Порембский Владимир Игоревич
  • Лютикова Елена Константиновна
  • Нистратов Виталий Михайлович
  • Боброва Любовь Петровна
  • Бунина Людмила Ивановна
  • Тимофеев Сергей Васильевич
RU2522617C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОЙ КАТИОНООБМЕННОЙ МЕМБРАНЫ 2011
  • Кононенко Наталья Анатольевна
  • Березина Нинель Петровна
  • Долгополов Сергей Владимирович
  • Половинко Татьяна Петровна
  • Фалина Ирина Владимировна
RU2487145C1
Способ получения композитной анионообменной мембраны 2022
  • Лоза Наталья Владимировна
  • Кутенко Наталья Анатольевна
RU2802630C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОЙ КОМПОЗИТНОЙ МЕМБРАНЫ 2011
  • Березина Нинель Петровна
  • Шкирская Светлана Алексеевна
  • Колечко Мария Викторовна
  • Тимофеев Сергей Васильевич
RU2483788C2
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРИРОВАННЫХ СУЛЬФОКАТИОНИТНЫХ МЕМБРАН МЕТОДОМ ПОЛИВА ИЗ РАСТВОРА 2009
  • Боброва Любовь Петровна
  • Лютикова Елена Константиновна
  • Порембский Владимир Игоревич
  • Фатеев Владимир Николаевич
  • Тимофеев Сергей Васильевич
RU2427593C1

Иллюстрации к изобретению RU 2 670 300 C1

Реферат патента 2018 года СПОСОБ ИЗГОТОВЛЕНИЯ ИОНООБМЕННОЙ ДВУХСЛОЙНОЙ МЕМБРАНЫ

Использование: изобретение относится к мембранной технике, в частности к способам получения ионообменных асимметричных мембран. Раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл - заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. Затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны. Далее смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл - с получением суспензии. На полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм. Затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя. Технический результат достигается за счет формирования четкой межфазной границы слоев мембраны, обеспечивающей высокое физическое сродство слоев мембраны, следствием чего является достижение низких значений коэффициента диффузионной проницаемости. 1 ил., 3 табл., 2 пр.

Формула изобретения RU 2 670 300 C1

Способ изготовления ионообменной двухслойной мембраны, заключающийся в том, что раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл - заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха, затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны, после чего смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл - с получением суспензии, на полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм, затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670300C1

КОМПОЗИЦИОННАЯ ИОНООБМЕННАЯ МЕМБРАНА 2007
  • Воропаева Екатерина Юрьевна
  • Ильина Анна Александровна
  • Шалимов Александр Сергеевич
  • Пинус Илья Юрьевич
  • Стенина Ирина Александровна
  • Ярославцев Андрей Борисович
RU2352384C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОЙ ИОНООБМЕННОЙ МЕМБРАНЫ РАДИАЦИОННО-ХИМИЧЕСКИМ МЕТОДОМ 2012
  • Головков Владимир Михайлович
  • Сохорева Валентина Викторовна
  • Тюрин Юрий Иванович
  • Сигфуссонн Торстеинн Инги
RU2523464C2
Филиппов и др
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Т
Прибор для нагревания перетягиваемых бандажей подвижного состава 1917
  • Колоницкий Е.А.
SU15A1
Вып
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
N
P
Berezinaa et al, Barrier Effects of Polyaniline Layer in Surface Modified MF4SK/Polyaniline Membranes, Russian Journal of Electrochemistry, 2011, Vol
Способ очищения сернокислого глинозема от железа 1920
  • Збарский Б.И.
SU47A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Устройство для избирательного вызова телефонных аппаратов 1922
  • Навяжский Г.Л.
SU995A1
CN 103657436 A, 01.06.2016.

RU 2 670 300 C1

Авторы

Петрова Дарья Андреевна

Филиппов Анатолий Николаевич

Гущин Павел Александрович

Иванов Евгений Владимирович

Новиков Андрей Александрович

Винокуров Владимир Арнольдович

Даты

2018-10-22Публикация

2018-03-28Подача