ЦИФРОВОЙ ИНТЕГРАТОР Российский патент 2018 года по МПК G06F7/00 

Описание патента на изобретение RU2670389C1

Изобретение относится к областям радиотехники, измерительной и вычислительной техники и может быть использовано в устройствах интегрирования в системах цифровой обработки сигналов, системах управления и специализированных вычислительных устройствах.

Известно устройство цифрового интегрирования [1] на базе реверсивного счетчика, в котором отсчеты сигнала преобразуются в последовательность импульсов, что снижает точность и скорость вычисления интеграла.

Известны цифровые интеграторы [2-4] на базе накапливающих сумматоров со сбросом, в которых отсутствует возможность непрерывного (текущего) интегрирования по выборке заданного объема, что снижает их быстродействие.

Известны цифровые интеграторы на базе цифровых усредняющих фильтров, например, с окном Дирихле [5] или с конечной импульсной характеристикой [6]. Их недостатком является сложность аппаратной реализации при большой выборке отсчетов сигнала.

Наиболее близким по технической сущности к предлагаемому устройству является цифровой интегратор [7], содержащий аналого-цифровой преобразователь (АЦП), генератор тактовых импульсов, элементы памяти с реверсивными счетчиками и многовходовой многоразрядный сумматор. Его недостатками являются сложность реализации многовходового сумматора и накопление отдельных разрядов отсчетов в реверсивных счетчиках, в которых при наличии ложного срабатывания ошибочный результат будет сохраняться неограниченно долго, что приведет к неустранимому сбою работы интегратора.

Основной операцией, определяющей эффективность цифрового интегрирования, является накопление (последовательное суммирование) отсчетов из выборки заданного объема, увеличение которого повышает точность результата, но усложняет аппаратную реализацию устройства.

Задачей предлагаемого технического решения является обеспечение непрерывного цифрового интегрирования сигнала по выборке отсчетов заданного объема с высокой точностью при минимальных аппаратных затратах.

Поставленная задача решается тем, что цифровой интегратор, содержащий АЦП, последовательно соединенный с ним элемент памяти и генератор тактовых импульсов (ГТИ), дополнительно содержит n каскадно соединенных двухвходовых сумматоров (СУМ) (, где – объем выборки, по которой проводится интегрирование), n регистров сдвига многоразрядных кодов (МР) и регистр результата (РР), первый вход k-го сумматора () и вход k-го регистра соединены вместе и образуют общий вход , выход соединен со вторым входом , выход сумматора подключен к входу , вход первого сумматора соединен с выходом элемента памяти, а выход последнего n-го сумматора соединен с входом РР, выход которого является выходом интегратора.

Предлагаемое техническое решение поясняется чертежами.

На фиг. 1 представлена структурная схема предлагаемого устройства, на фиг. 2 – результаты моделирования работы интегратора при гармоническом входном сигнале, на фиг. 3 – результаты моделирования для импульсного сигнала, а на фиг. 4 – оценка относительной погрешности интегрирования.

Интегрируемый сигнал 1 поступает на вход АЦП 2, который по тактовым импульсам ГТИ 3, выход которого соединен с тактовым входом АЦП 2, формирует отсчеты, которые записываются в ячейку памяти (регистр) 4. Выход ячейки памяти 4 подключен к соединенным между собой первому входу первого сумматора 5-1 и входу первого регистра 6-1, выход которого подключен ко второму входу сумматора 5-1. Выход первого сумматора 5-1 подключен к соединенным между собой первому входу второго сумматора 5-2 и входу второго регистра 6-2, выход которого подключен ко второму входу сумматора 5-2. Аналогично выход предпоследнего сумматора подключен к соединенным между собой первому входу последнего сумматора 5-n и входу регистра 6-n, выход которого подключен ко второму входу сумматора СУМn 5-n. Выход последнего сумматора 5-n, на котором формируется сумма 7 из N поступивших отсчетов, соединен с входом регистра результата 8, выход которого является выходом интегратора 9. На управляющие входы АЦП 2, ячейки памяти 4, регистров и РР подаются импульсы от ГТИ 3.

Устройство работает следующим образом.

Входной сигнал 1, поступает на вход АЦП 2, который в моменты времени , определяемые ГТИ 3 (i – порядковый номер), с интервалом времени τ формирует отсчеты входного сигнала. В текущий момент () обрабатывается выборка отсчетов объемом (n – целое число), по которой с помощью формулы прямоугольников [8] определяется значение интеграла на интервале времени от до :

, (1)

с абсолютной погрешностью R, равной [8]

, (2)

где .

Как видно, при заданном интервале интегрирования погрешность R падает с ростом N. Таким образом, для снижения погрешности необходимо использовать выборки отсчетов большого объема , но при этом прямое вычисление суммы (1) потребует значительных затрат времени, тогда актуальным является использование быстрых вычислительных алгоритмов усреднения, требующих выполнения минимального числа операций сложения, что позволит упростить аппаратную реализацию интегратора.

Отсчеты смеси входного сигнала с выхода АЦП 2 запоминаются в ячейке памяти 4. В момент времени отсчет подается на вход первого сумматора 5-1. где он складывается с предшествующим значением из регистра 6-1 емкостью в одну ячейку памяти (один отсчет), которое было записано в него на предшествующем шаге, и на выходе сумматора 5-1 формируется сумма отсчетов . Полученная сумма подается на вход сумматора 5-2, где она складывается с ранее записанным значением на выходе регистра сдвига 6-2 на две ячейки памяти. На выходе сумматора 5-2 получим сумму четырех отсчетов . Далее вычисления проводятся аналогично, и на вход последнего сумматора 5-n подается сумма

,

которая складывается в нем с суммой

,

ранее записанной в регистре сдвига 6-n на ячеек. Таким образом, на выходе сумматора 5-n формируется искомая сумма

, (3)

представляющая собой нормированное значение 7 интеграла (1):

.

Эта величина записывается в регистр результата 8 и на его выходе появляется результат интегрирования 9. После записи суммы отсчетов в регистр результата по импульсам ГТИ содержимое регистров сдвига 6-k () сдвигается и в освободившуюся от устаревшего значения ячейку записывается величина с выхода предшествующего сумматора.

Нетрудно видеть, что для вычисления полной суммы (3) требуется блоков сумматоров и столько же регистров сдвига, например, при получим . Общий объем ячеек памяти многоразрядных регистров сдвига равен N. Многоразрядные регистры сдвига можно реализовать с помощью оперативного запоминающего устройства. При этом обеспечивается минимум арифметических операций на отсчет сигнала и, следовательно, высокая скорость обработки при минимальных аппаратных затратах. Технически устройство наиболее целесообразно реализовать на базе программируемых логических интегральных схем (ПЛИС). Современные ПЛИС позволяют реализовать предлагаемое устройство при с рабочими частотами до 50-200 МГц.

В случае гармонического входного сигнала точное значение интеграла от до t равно

. (4)

Результат имитационного моделирования работы интегратора вида

показан на фиг. 2а сплошной линией, точечной линией показаны истинные значения интеграла из (4) в серединах интервалов квантования при кГц, мск, (). В области происходит заполнение многоразрядных регистров сдвига, а при отклик интегратора совпадает с функцией (4). На фиг. 2б приведены значения погрешности работы интегратора без учета эффектов квантования сигнала в АЦП, как видно, она достаточно мала. Согласно (2), для абсолютной погрешности получим , при этом на рис. 2б . На фиг. 2в и фиг. 2г показаны временные диаграммы, аналогичные фиг. 2а, на частотах сигнала Гц и кГц соответственно. В последнем случае погрешность интегрирования повышается до (на периоде сигнала укладывается только 50 отсчетов).

На фиг. 3а показана временная диаграмма входного импульсного сигнала с периодом, равным отсчетов, а на фиг. 3б – результат работы интегратора при мск, , погрешность меньше .

При ограниченной разрядности АЦП погрешность интегрирования значительно увеличивается. На фиг. 4 приведена полученная в результате моделирования зависимость относительной максимальной погрешности

от числа m разрядов АЦП для гармонического сигнала вида фиг. 2а при и при условии, что сигнал занимает всю разрядную сетку АЦП. Как видно, современные АЦП обеспечивают достаточно точное интегрирование сигнала. Величина зависит от формы сигнала и его параметров. Приближенно она меняется по закону .

С уменьшением амплитуды сигнала погрешность повышается, то есть целесообразно проводить масштабирование преобразования сигнала в последовательность отсчетов. При увеличении объема выборки до при относительная погрешность уменьшается до по сравнению со значением при .

Частота квантования АЦП от ГТИ должна выбираться не менее чем в 30-50 раз выше граничной частоты спектра входного сигнала.

Источники информации

1. Трохин В.М., Перельмутер В.М., Энтина В.И. Цифроаналоговые системы автоматического управления. – К.: Технiка, 1979. – 160 с.

2. Новиков Ю.В. Введение в цифровую схемотехнику. – М.: Интенет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2007. – 343 с.

3. Дрозд А.В., Полин Е.Л., Нестеренко С.А., Николенко А.А., Ногина Е.Н. Устройство цифрового интегрирования // Авторское свидетельство SU 1532922А1, МПК G06F7/64 от 30.12.89 (Бюлл. № 48).

4. Полян Л.Е., Угер В.Г. Цифровой интегратор // Патент № 2029357, МПК G06F7/64 от 20.02.1995; заявка № 5043408/24 от 26.05.1992.

5. Гутников В.С. Фильтрация измерительных сигналов. – Л.: Энергоатомиздат, 1990. – 122 с.

6. Солонина А.И., Улахович Д.А., Арбузов С.М., Соловьева Е.Б. Основы цифровой обработки сигналов. – СПб.: БХВ Петербург, 2005. – 768 с.

7. Ледовских В.И., Бухтияров С.А. Цифровой интегратор // Авторское свидетельство SU 1478214А1, МПК G06F7/64 от 07.05.89 (Бюлл. № 17).

8. Гусак А.А., Гусак Г.М., Бричикова Е.А. Справочник по высшей математике. – Мн.: ТетраСистеис, 1999. – 640 с.

Похожие патенты RU2670389C1

название год авторы номер документа
ЦИФРОВОЙ ИНТЕГРАТОР 2019
  • Чернояров Олег Вячеславович
  • Макаров Александр Андреевич
  • Сальникова Александра Валериевна
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
RU2710990C1
Цифровой коррелятор 2020
  • Чернояров Олег Вячеславович
  • Демина Татьяна Ивановна
  • Пергаменщиков Сергей Маркович
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Пантенков Дмитрий Геннадьевич
RU2735488C1
Цифровой измеритель действующего значения сигнала 2018
  • Чернояров Олег Вячеславович
  • Сальникова Александра Валериевна
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
  • Матвеев Борис Васильевич
  • Пчелинцев Евгений Анатольевич
RU2685062C1
Цифровой измеритель параметров случайных процессов с распределением Накагами 2020
  • Чернояров Олег Вячеславович
  • Пергаменщиков Сергей Маркович
  • Макаров Александр Андреевич
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
RU2742695C1
Цифровой измеритель коэффициента корреляции случайного сигнала 2020
  • Чернояров Олег Вячеславович
  • Пергаменщиков Сергей Маркович
  • Макаров Александр Андреевич
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
RU2747725C1
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ СИГНАЛОВ 2017
  • Чернояров Олег Вячеславович
  • Макаров Александр Андреевич
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
  • Матвеев Борис Васильевич
RU2662412C1
ЦИФРОВОЙ ДЕМОДУЛЯТОР СИГНАЛОВ С АМПЛИТУДНО-ФАЗОВОЙ МАНИПУЛЯЦИЕЙ 2022
  • Чернояров Олег Вячеславович
  • Демина Татьяна Ивановна
  • Пергаменщиков Сергей Маркович
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
RU2786159C1
Цифровой когерентный демодулятор сигналов с двоичной относительной фазовой манипуляцией 2020
  • Чернояров Олег Вячеславович
  • Макаров Александр Андреевич
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
  • Герасименко Евгений Сергеевич
RU2748858C1
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ СДВИГА ФАЗ ГАРМОНИЧЕСКИХ СИГНАЛОВ 2020
  • Чернояров Олег Вячеславович
  • Макаров Александр Андреевич
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
  • Литвиненко Юлия Владимировна
  • Пантенков Дмитрий Геннадьевич
RU2751020C1
Цифровой демодулятор сигналов с амплитудной - относительной фазовой манипуляцией 2022
  • Чернояров Олег Вячеславович
  • Сальникова Александра Валериевна
  • Черноярова Елена Валериевна
  • Багателия Нана Григорьевна
  • Глушков Алексей Николаевич
  • Литвиненко Владимир Петрович
RU2790205C1

Иллюстрации к изобретению RU 2 670 389 C1

Реферат патента 2018 года ЦИФРОВОЙ ИНТЕГРАТОР

Изобретение относится к областям радиотехники, измерительной и вычислительной техники и может быть использовано в устройствах интегрирования в системах цифровой обработки сигналов, системах управления и специализированных вычислительных устройствах. Технический результат заключается в обеспечении непрерывного цифрового интегрирования сигнала по выборке отсчетов заданного объема с высокой точностью при минимальных аппаратных затратах. Цифровой интегратор содержит аналого-цифровой преобразователь, элемент памяти, генератор тактовых импульсов, n двухвходовых сумматоров, n регистров сдвига многоразрядных кодов и регистр результата. 4 ил.

Формула изобретения RU 2 670 389 C1

Цифровой интегратор, содержащий аналого-цифровой преобразователь, последовательно соединенный с ним элемент памяти и генератор тактовых импульсов (ГТИ), отличающийся тем, что он дополнительно содержит n каскадно соединенных двухвходовых сумматоров (СУМ), n регистров сдвига многоразрядных кодов (МР) и регистр результата (РР), первый вход k-го сумматора () и вход k-го регистра соединены вместе и образуют общий вход k-го СУМ, выход k-го МР соединен со вторым входом k-го СУМ, выход k-го СУМ подключен к входу -го СУМ, вход первого сумматора соединен с выходом элемента памяти, а выход последнего n-го сумматора соединен с входом РР, выход которого является выходом интегратора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670389C1

ЦИФРОВОЙ СИНТЕЗАТОР ЧАСТОТ 1991
  • Ямпурин Н.П.
  • Станков В.С.
  • Сучкова А.Б.
  • Токарева В.П.
RU2030092C1
ЦИФРОВОЙ СИНТЕЗАТОР ЧАСТОТ 2007
  • Измайлова Яна Алексеевна
  • Станков Валерий Сергеевич
RU2344541C1
Цифровой интегратор 1987
  • Ледовских Валерий Иванович
  • Бухтияров Семен Андреевич
SU1478214A1
US 4701871, 20.10.1987.

RU 2 670 389 C1

Авторы

Чернояров Олег Вячеславович

Сальникова Александра Валериевна

Литвиненко Владимир Петрович

Литвиненко Юлия Владимировна

Матвеев Борис Васильевич

Пчелинцев Евгений Анатольевич

Даты

2018-10-22Публикация

2018-03-26Подача