Коррозионностойкий литейный алюминиевый сплав Российский патент 2018 года по МПК C22C21/00 

Описание патента на изобретение RU2672653C1

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих в коррозионной среде при температурах до 300-350°С, в том числе деталей автомобильных двигателей (головки цилиндров, корпуса водяных насосов, впускные трубы и др.), деталей судостроения, водозаборной арматуры, радиаторов отопления и др.

Одним из недостатков марочных алюминиевых сплавов является то, что технология получения из них отливок требует полной термообработки, включающей в себя операцию закалки. Это удорожает их стоимость и нередко приводит к появлению нежелательного брака, в частности, к нестабильности размеров. Следует также отметить, что сплавы типа АМ5 имеют очень низкие литейные свойства, что затрудняет получение из них тонкостенных отливок сложной формы [Золоторевский B.C., Белов Н.А. Металловедение литейных алюминиевых сплавов - М.: МИСиС, 2005, 376 с]. Сплавы типа АМ5, как и другие медь-содержащие сплавы, характеризуются пониженной коррозионной стойкостью.

Для устранения недостатков, свойственных сплавам типа АМ5, в работе [Belov N.A. “Principles of Optimising the Structure of Creep-Resisting Casting Aluminium Alloys Using Transition Metals” Journal of Advanced Materials, 1994 1 (4), p. 321-329] было предложено создавать термостойкие сплавы на базе эвтектики (Al)+Al3Ni за счет легирования никелем и другими переходными металлами (Mn, Zr, Cr, Sc, V и т.д.). Сконструированные таким образом сплавы ориентированы на традиционные литейные технологии и имеющееся оборудование, технологический цикл получения из них готовых деталей намного короче по сравнению с марочными сплавами на базе системы Al-Cu (в частности, отсутствует операция закалки). Этот подход нашел отражение в ряде патентов. В частности, в патенте РФ №2001145 (бюл. 37-38 от 15.10.1993, МИСиС) заявлен сплав на основе алюминия, содержащий 3-6,5% Ni, 0,5-2% Mn, 0,2-0,8% Sc и 0,05-0,3% Zr. Данный сплав обладает превосходными литейными свойствами и более высокой жаропрочностью при 300-350°С по сравнению со сплавами типа АМ5. На базе эвтектики (Al)+Al3M было разработано несколько экспериментальных сплавов (они получали название никалины), которые успешно прошли опытно-промышленное опробование в условиях ОАО «ИЛ» и ОАО «ВАСО» [Белов Н.А., Золоторевский B.C. «Литейные сплавы на основе алюминиево-никелевой эвтектики (никалины) как возможная альтернатива силуминам», Цветные металлы, 2003, №2, С. 99-105]. Недостатком этих сплавов является высокое содержание никеля, что отрицательно сказывается на их коррозионной стойкости. Вторым недостатком является строгое ограничение по предельно допустимому содержанию железа, т.е. для их производства требуется алюминий высокой чистоты, что также приводит к удорожанию отливок.

Известен сплав, раскрытый в патенте US 2004/0261916 F1 (публ. 30.12.2004, патентовладелец: Alcoa Inc.). Данный сплав, предназначенный для получения фасонных отливок различными методами литья, содержит (масс. %): 0,5-6% Ni, 1-3% Mn, до 1% Zr, до 0,6% Sc. В частных пунктах этого патента заявлены наиболее предпочтительные концентрации легирующих элементов: ~4% Ni, ~2% Mn, ~0,6% Zr, (или ~ 0,3% Sc). Основным недостатком этого сплава является неэкономный состав: высокое содержание никеля и отсутствие среди легирующих компонентов железа. Это препятствует использованию лома отходов для его производства. Следует также отметить, что повышенное содержание никеля отрицательно сказывается на их коррозионной стойкости.

Наиболее близким сплавом к предложенному является сплав, раскрытый в патенте РФ №2478131 (публ. 27.03.2013, бюл. №9). Сплав, предназначенный для получения отливок, содержит (мас. %): 1,5-2,5 Ni; 1-2 Mn; 0,3-0,7 Fe, 0,2-0,6 Zr, 0,02-0,12 Sc, 0,002-0,1 Се при содержании циркония и скандия, удовлетворяющем условию 0,44<2⋅CZr+Csc<0,64, причем цирконий и скандий присутствуют в структуре сплава в виде фазы Al3(Zr,Sc) с кристаллической решеткой L12 и средним размером наночастиц не более 20 нм. Техническим результатом является создание нового литейного экономнолегированного термостойкого сплава. Сплав обладает высокими литейными свойствами, что обусловлено наличием в его составе никеля в качестве основного эвтектико-образующего элемента. Снижение концентрации никеля по сравнению со сплавом, приведенным в патенте US 2004/0261916, улучшает коррозионную стойкость. Однако она, тем не менее, остается недостаточно высокой. Еще одним недостатком сплава-прототипа является то, что он имеет строгое ограничение по примеси кремния и для нейтрализации вредного влияния этого элемента на горячеломкость он дополнительно содержит церий.

Техническим результатом изобретения является создание нового термостойкого сплава на основе алюминия, предназначенного для получения фасонных отливок сложной формы и обладающего повышенной коррозионной стойкостью по сравнению со сплавом-прототипом, а также допускающего в своем составе до 0,5% кремния

Технический результат достигается тем, что литейный сплав на основе алюминия, содержащий железо, марганец, цирконий и скандий, отличается тем, что он дополнительно содержит кальций и кремний при следующих концентрациях легирующих компонентов, масс. %:

Компонент Содержание в сплаве, масс. % Кальций 2,0-2,6 Железо 0,4-0,6 Кремний 0,1-0,5 Марганец 0,8-1,2 Цирконий 0,2-0,3 Скандий 0,08-0,12 Алюминий основа

Изобретение поясняется чертежом, где на фиг. 1 показана морфология алюминиево-кальциевой эвтектики в заявляемом сплаве состава №3 в литом состоянии (табл. 1), СЭМ, на фиг. 2 показаны вторичные выделения фазы Al6Mn в заявляемом сплаве состава №3 после отжига (табл. 1), ПЭМ, на фиг. 3 изображены наночастицы фазы Al3(Zr,Sc) (кристаллическая решетка L12) в заявляемом сплаве состава №3 после отжига (табл. 1), ПЭМ, темнопольное изображение в рефлексах фазы L12, на фиг. 4 изображены отливки «Арфа», полученная из заявляемого сплава состава №3 (а) и прототипа состава №7 (б), см. табл. 1

Сущность изобретения состоит в следующем.

Кальций выполняет функцию основного эвтектико-образующего элемента, что позволяет сохранить высокие литейные свойства на уровне сплава-прототипа и при этом повысить коррозионную стойкость.

Железо и кремний в заявленных пределах позволяют повысить дисперсность алюминиево-кальциевой эвтектики (Фиг. 1). Другими словами, эти элементы выполняют функцию модификаторов эвтектики, что благоприятно для механических свойств.

Концентрация марганца в заявленных пределах обеспечивает необходимый уровень механических свойств. После термообработки марганец присутствует в структуре в виде вторичных выделений фазы Al6Mn, типичный размер которых составляет 100-500 мкм (Фиг. 2).

Концентрации циркония и скандия в заявленных пределах обеспечивают необходимый эффект дисперсионного твердения за счет образования при отжиге наночастиц фазы Al3(Zr,Sc) с решеткой L12 (Фиг. 3)

ПРИМЕР 1.

Были приготовлены 6 сплавов, составы которых указаны в табл. 1 (№№1-6). Все сплавы готовили в электрической печи сопротивления в графитошамотных тиглях на основе первичного алюминия марки А85. Из экспериментальных сплавов были получены отдельно отлитые образцы согласно ГОСТ 1583-93. Эти образцы подвергали отжигу в муфельной электропечи сплавы 1-5 по следующему режиму: 300°С, 3 часа + 400°С, 3. часа. После отжига образцы выдерживали в водном растворе 3% NaCl+0,3% H2O2, в течение 3 суток.

Механические свойства (временное сопротивление-σв, условный предел текучести-σ0,2 и относительное удлинение-δ) определяли по результатам испытаний на одноосное растяжение на машине Zwick Z250. Испытания при комнатной температуре проводили по ГОСТ 1497-84.

Из табл. 1 видно, что только заявляемый сплав (составы 2-4) обеспечивает наилучшее сочетание временного сопротивления, предела текучести и относительного удлинения. В сплаве 1 прочность меньше требуемого уровня, что связано с недостаточным количеством выделений фаз Al6Mn и Al3(Zr,Sc). Сплав 5 имеет низкое значение δ, что связано с наличием первичных кристаллов интерметаллидов. Сплав прототип (состав 6) уступает сплавам 2-4 по механическим свойствам, что обусловлено наличием никеля, который ухудшает коррозионную стойкость.

ПРИМЕР 2.

Из заявляемого сплава состава №4 и сплава-прототипа №7, содержащим аналогичное количество кремния (см. табл. 1) были залиты по 5 отливок «Арфа». Отливки, полученная из заявленного сплава, не содержали трещин и других видимых литейных дефектов (Фиг. 4а), в то время как отливки из сплава состава №7 были с явными признаками горячеломкости (Фиг. 4,).

Похожие патенты RU2672653C1

название год авторы номер документа
ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ 2010
  • Белов Николай Александрович
  • Белов Владимир Дмитриевич
  • Алабин Александр Николаевич
  • Мишуров Сергей Сергеевич
RU2478131C2
Алюминиево-кальциевый сплав 2022
  • Белов Николай Александрович
  • Цыденов Андрей Геннадьевич
  • Финогеев Александр Сергеевич
  • Летягин Николай Владимирович
  • Наумова Евгения Александровна
RU2790117C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2017
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Алабин Александр Николаевич
  • Хромов Александр Петрович
RU2683399C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2019
  • Манн Виктор Христьянович
  • Алабин Александр Николаевич
  • Хромов Александр Петрович
  • Вальчук Сергей Викторович
  • Крохин Александр Юрьевич
  • Фокин Дмитрий Олегович
  • Вахромов Роман Олегович
  • Юрьев Павел Олегович
RU2735846C1
Способ получения слитков из алюмоматричного композиционного сплава 2018
  • Белов Николай Александрович
  • Акопян Торгом Кароевич
  • Мишуров Сергей Сергеевич
RU2697683C1
Литейный алюминиево-кальциевый сплав на основе вторичного сырья 2020
  • Летягин Николай Владимирович
  • Акопян Торгом Кароевич
  • Белов Николай Александрович
RU2741874C1
Деформируемый алюминиевый сплав на основе системы Al-Mg-Sc-Zr с добавками Er и Yb (варианты) 2020
  • Барков Руслан Юрьевич
  • Поздняков Андрей Владимирович
RU2743079C1
Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава 2019
  • Белов Николай Александрович
  • Акопян Торгом Кароевич
  • Мишуров Сергей Сергеевич
  • Летягин Николай Владимирович
RU2716566C1
Деформируемый алюминиево-кальциевый сплав 2018
  • Белов Николай Александрович
  • Наумова Евгения Александровна
  • Дорошенко Виталий Владимирович
RU2699422C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2017
  • Манн Виктор Христьянович
  • Алабин Александр Николаевич
  • Крохин Александр Юрьевич
  • Фролов Антон Валерьевич
  • Ефимов Константин Васильевич
RU2673593C1

Иллюстрации к изобретению RU 2 672 653 C1

Реферат патента 2018 года Коррозионностойкий литейный алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих в коррозионной среде при температурах до 300-350°С. Литейный сплав на основе алюминия содержит, мас. %: кальций 2,0-2,6, железо 0,3-0,5, кремний 0,1-0,5, марганец 0,8-1,2, цирконий 0,2-0,3, скандий 0,08-0,12, алюминий - остальное, причем сплав содержит цирконий и скандий в своей структуре в виде наночастиц фазы Al3(Zr, Sc) с кристаллической решеткой L12, имеющих средний размер не более 20 нм. Сплав после выдержки в водном растворе 3%NaCl+0,3%H2O2 в течение до 3 суток включительно обладает следующими свойствами на растяжение: временное сопротивление (σв) не менее 240 МПа, предел текучести (σ0,2) не менее 160 МПа, относительное удлинение (δ) - не менее 3%. Техническим результатом изобретения является создание нового экономнолегированного коррозионностойкого алюминиевого сплава, предназначенного для получения фасонных отливок сложной формы и обладающего высокими и стабильными механическими свойствами, не требующего операции закалки в ходе проведения термической обработки. 1 з.п. ф-лы, 4 ил., 1 табл., 2 пр.

Формула изобретения RU 2 672 653 C1

1. Литейный сплав на основе алюминия, содержащий железо, марганец, цирконий и скандий, отличающийся тем, что он дополнительно содержит кальций и кремний при следующих концентрациях легирующих компонентов, мас. %:

Кальций 2,0-2,6 Железо 0,3-0,5 Кремний 0,1-0,5 Марганец 0,8-1,2 Цирконий 0,2-0,3 Скандий 0,08-0,12 Алюминий Основа,

причем сплав содержит цирконий и скандий в своей структуре в виде наночастиц фазы Al3(Zr, Sc) (кристаллическая решетка L12), имеющих средний размер не более 20 нм.

2. Сплав по п. 1, отличающийся тем, что после выдержки в водном растворе 3%NaCl+0,3%H2O2 в течение до 3 суток включительно он обладает следующими свойствами на растяжение: временное сопротивление (σв) не менее 240 МПа, предел текучести (σ0,2) не менее 160 МПа, относительное удлинение (δ) - не менее 3%.

Документы, цитированные в отчете о поиске Патент 2018 года RU2672653C1

Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
CN 101519748 A, 02.09.2009
US 20150122378 A1, 07.05.2015
ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ 2010
  • Белов Николай Александрович
  • Белов Владимир Дмитриевич
  • Алабин Александр Николаевич
  • Мишуров Сергей Сергеевич
RU2478131C2

RU 2 672 653 C1

Авторы

Белов Николай Александрович

Наумова Евгения Александровна

Дорошенко Виталий Владимирович

Даты

2018-11-16Публикация

2017-11-16Подача